说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 幂半环
1)  power semigrings
幂半环
1.
Results: introduce the concept of power semirings and homomorphism and congruence relation of power semigrings,give the sufficient and necessary conditions of R suth that be power semirings,discuss the relations of homomorphism and congruence relation of power semigrings and obtain some interesting results.
目的:研究半环的提升——幂半环
2)  A-idempotent semiring
A幂等半环
3)  idempotent semiring
幂等元半环
1.
On bi-closed subbands of a band and free idempotent semirings;
带的双闭子带和自由幂等元半环(英文)
4)  V-idempotent semiring
V-幂等半环
1.
It is proved that V-idempotent semiring is normal if and only if it is a pseudo-strong right normal idempotent semiring of left zero semirings,and the direct product of left normal V-idempotent semiring with a ring is a pseudo-strong semilattice idempotent semiring of left rings,and some corollaries.
证明了V-幂等半环是正规的当且仅当它是左零半环的伪强右正规幂等半环,并得出左正规V-幂等半环与环的直积是左环的伪强半格幂等半环,及相关结论。
5)  idempotent semirings
幂等元半环
1.
Necessary and sufficient conditions of Green-L+ ∩L· relation satisfied by idempotent semirings are given.
给出幂等元半环S满足2个Green L-关系的交的充要条件;对2个Green L-关系的交是S上的同余作了进一步刻划。
2.
The class of idempotent semirings is a very important class of semirings.
幂等元半环是一类非常重要的半环,许多专家学者对其进行了深入细致的系统研究。
6)  idempotent bi-semiring
幂等元双半环
1.
In this paper,through the discussion of the Green-D relations of three idempotent semirings on the idempotent bi-semiring,the Green-D relations of the idempotent bi-semiring are studied.
通过对幂等元双半环中三个幂等元半环上的Green D-关系交的讨论,研究了幂等元双半环上的Green D-关系,从而给出了幂等元双半环上满足三个Green D-关系交的充要条件,且对三个Green D-关系的交是上的同余作了进一步刻划。
补充资料:幂等元的半群


幂等元的半群
idempotents, semi -group of

式.幂等元的半群【i山和四把血,胭山.gr0llPof;“朋MnoTe“-功。no刀yll.担na」,幂等元半群(idemPotent semi-gr。叩) 每个元素皆为幂等元(记enlPo忆nt)的半群.幂等元半群亦称为带(恤nd)(这与半群的带(比11dof~一grouP)的概念相容:幂等元半群是单元素半群的带).交换的幂等元半群称为半格(~一扭仗元c);这术语与它在偏序集理论中的应用相容:若对交换幂等元半群S考虑其自然偏序,则元素a,b任S的最大下界正是ab.半格是二元半格的次直积.若半群S满足恒等式尤y=x,xy=y中的一个,则称S为奇异的(sin孚har);在第一种情形,S是左奇异的(left-sin酗ar),或左零半群(~一gro叩of left Zero‘),第二种情形是右奇异的(石乡止.singr血r)或右零半群(s咖一gro叩of rigllt zeros).一个半群称为矩形(既-扭ng口ar)半群,若它满足恒等式义yx二戈(该术语有时在稍广的意义下使用,见【11).对半群S,下列条件是等价的:1)5是矩形半群;2)5是理想单的幂等元半群(见单半群(s加P1e~·gro叩));3)S是幂等元完全单半群(c omplete】y一sirnples洲一grouP);及4)S同构于直积L xR,其中L是左奇异半群而R是右奇异半群.每个幂等元半群是C五成阔半群(Oifford sen卫·gro叩)且分裂成矩形半群的一个半格(亦见半群的带(比nd ofs洲·groups)).这个分裂是幂等元半群的许多性质研究的起点.幂等元半群是局部有限的 幂等元半群已从各种观点得到研究,包括簇论的观点.令所有幂等元半群的簇为见,在【4]一16]中完全地描述了黔的所有子簇的格;它是可数的,分配的,且簇见的每个子簇由一个恒等式确定.这个格可图解如下: II 二,:二J,,:角二,:.二:,, _1 FJ.工V今飞冲匕母丁yr‘yl 艺卜,’=Z,’F仁之子洲叼2盛.丢二月工yZ二yXZ 华‘\\工岁夕zIt, J二y图中对黔中较低层的一些簇给出了与其相应的恒等
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条