说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 半循环幂级数
1)  semi cyclic powers series
半循环幂级数
2)  cyclic powers series
循环幂级数
1.
In the paper, the author applies the extended hyperbolic function and extended triangle function to the cyclic function and the cyclic powers series and so on.
本文是广义双曲函数与广义三角函数在循环函数与循环幂级数等方面的应
3)  the semiring-semimodule pairs of formal power series
形式幂级数半环半模对
1.
Also,the semiring-semimodule pairs of formal power series with coefficients in such a semiring-semimodule pairs is discussed.
讨论了系数在一些半环半模对中的形式幂级数半环半模对,证明了系数为双归纳半环半模对的形式幂级数半环半模对(双μ-半环半模对,双*-μ-半环半模对,双λ-半环半模对,双*-λ-半环半模对)仍然是双归纳半环半模对(双μ-半环半模对,双*-μ-半环半模对,双λ-半环半模对,双*-λ-半环半模对),给出了系数为双弱归纳半环半模对的形式幂级数半环半模对仍然是双弱归纳半环半模对的充要条件。
4)  power series ring
幂级数环
5)  skew power series ring
斜幂级数环
1.
Some extension of clean general rings is expounded based on it and it is shown that:(1) a general ring I is a clean general ring if and only if its power series ring is a clean general ring if and only if its skew power series ring is a clean general ring.
在此基础上讨论了一般clean环的几个扩张性质,得到如下结论:1)一般环I是一般clean环当且仅当I的形式幂级数环是一般clean环当且仅当I的斜幂级数环是一般clean环。
2.
It is shown that the skew power series ring R[[x; α]] is right p.
本文证明了斜幂级数环R[[x,α]]是右主拟Baer环当且仅当R是右主拟Baer环,并且R的任意可数幂等元集在I(R)中有广义交,其中I(R)是R的幂等元集。
3.
Given a c commutative ring R , obtains some conditions such that the skew power series ring R[[x,α]] and the trivial extension R∝M are also c commutative,and give examples to show these conditions are necessary.
对于 c-可换环 R,给出条件使得斜幂级数环 R[[x,α]]和 R的平凡扩张 R∝Μ也为 c-可换环 ,并用例子说明这些条件是必要的 。
6)  ring of Hurwitz series
Hurwitz幂级数环
补充资料:渐近幂级数


渐近幂级数
asymptotic power series

渐近幕级数[asymp峭c脚wer series;a~or.,.,.翻cra暇”曰甫p朋] 关于序列 {x一”}(x*oo)或者序列 {(x一x。)n}(x*x。)的渐近级数(见函数的渐近展开(asymPtotic exPan-sion)).渐近幂级数可以象收敛幂级数那样进行加、乘、除和积分运算. 设两个函数f(x)和g(x)当x~co时具有下列渐近展开 巴a_畏瓦 f(X)~》:—,g《义)~夕一一丁. 子二〕x“石诬b厂’这时,有 畏Aa.+Bb. l、Af(x、+Bg〔x)~)’— n=OX’(A,B为常数); 华耘C. ‘11(X,gIX】~): ,三劝X” 11恩d- ,,商一j0--+患访,a“铸o饥,d。可象对收敛幂级数那样来计算); 4)如果函数f(x)当x>a>O时是连续的,则 二f 0.)。。 ,l_“11_奋气“n+1 口1 111.一口n一—l口t~夕—, 二「‘J曰nx~(5)渐近幕级数汗不总能进行微分,但是如果八劝典有能够展外为渐近幂级数的连续导数,则 “一’一盘竺黔 渐迈幂级数的例r_ )令、一只已.兴二; 召e‘介冲r一l丫lr佃十12邓 V大e月卜’tX二卜一)、一仁“_“_ 一,月}之.户乙.,丫月 门一0乙一叮一n二X〕t门,I了六“(、)是零阶Hankel函数(Hankel rbncl,()ns)日面的渐近幂级数对}一切_、发散). 对少复变量一的函数,在无穷远点的邻域内或者在‘卜角内,当:),时,类似的结论也成立.在复变量的J清况拜5)只有厂列形式:如果函数f(:)在区域I)一{曰一>“一,长盯g二}<川中是正则的,并且在包含干l)巾的任何闭角囚、当{:},羌川,依盯g:一致地有 半乙a, I饭2.~)— 月二02则在包含于I)中}〔何闭角内,’绳:{卜二时,依盯g: 致地有 浮乙I奋口. f了夕、~一、,一‘二一 价而z’
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条