1) pseudo-strong right normal idempotent semiring of C-semirings
C-半环的伪强右正规幂等半环
2) pseudo-strong right normal idempotent semiring of left zero semirings
左零半环的伪强右正规幂等半环
1.
and this kind of idempotent semiring is a pseudo-strong right normal idempotent semiring of left zero semirings,This result gets the characterization of the direct product of this kind of idempotent sermiring and a ring as a pseudo-strong right normal idempotent semiring of left rings.
本文讨论了满足a+ab=a+b的幂等半环的结构,给出这种幂等半环是左零半环的伪强右正规幂等半环,并得出这种幂等半环与环的直积是左环的伪强右正规幂等半环。
3) strong right normal idempotent semiring of left zero idempotent semirings
左零幂等半环的强右正规幂等半环
4) A-idempotent semiring
A幂等半环
5) idempotent semiring
幂等元半环
1.
On bi-closed subbands of a band and free idempotent semirings;
带的双闭子带和自由幂等元半环(英文)
6) V-idempotent semiring
V-幂等半环
1.
It is proved that V-idempotent semiring is normal if and only if it is a pseudo-strong right normal idempotent semiring of left zero semirings,and the direct product of left normal V-idempotent semiring with a ring is a pseudo-strong semilattice idempotent semiring of left rings,and some corollaries.
证明了V-幂等半环是正规的当且仅当它是左零半环的伪强右正规幂等半环,并得出左正规V-幂等半环与环的直积是左环的伪强半格幂等半环,及相关结论。
补充资料:半环
半环
Suu-iuras
半环【,如i消嗯;uOJIyKO侧o] 一个非空集合,带两个结合的二元运算十和·,满足分配律 (a+b)·c=a .e+b·e和 “·(b+c)=“·b+“·c在大多数情况下也假定加法是交换的,并月.存在一个零元O,使得对每个a,“十O二“.半环的最重要的例子是环(nng)和分配格(distribu石Ve lat石ce)).如果存在乘法单位元1,则这两类例子由条件 丫x日y(义+y=1)统一.非负整数在通常的运算下,提供了一个不满足此条件的半环的例子. 刃.A.CKoPH,x印撰蔡传仁译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条