说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Lévy风险过程
1)  Levy risk process
Lévy风险过程
2)  super-Lévy process
超Lévy过程
1.
The state of historical super-Lévy process is a measure on the set of paths.
引进了超Lévy过程,研究了在它的域(range)和支撑中粒子的最大速度问题。
3)  Lévy process
Lévy过程
1.
Super-Lévy process was introduced.
引进了超Lévy过程,研究了在它的域(range)和支撑中粒子的最大速度问题。
2.
Let X be a Lévy process and (ε,D(ε)) be the Dirichlet form associated with it.
设(Xt)t>0是Lévy过程,(ε,D(ε))为其联系的狄氏型;对任意的u∈D(ε),设Ntu为u(Xt)-u(X0)的Fukushima分解中的零能量连续可加泛函。
3.
Then we deduce the dynamical capital asset pricing model from this dynamical linear pricing rule in the market driven by Lévy processes.
首先给出了未定权益的动态线性定价机制,然后在连续时间Lévy过程驱动的市场模型下,利用Lévy过程的弱可料表示性和Girsanov定理,从动态线性定价法则导出了动态资本资产定价模型。
4)  Levy process
Lévy过程
1.
Recently, they are widely used in describing the connections between branching processes and Levy processes, the stochastic volatilities of finance assets, and the default intensities and so on.
近年来,其在刻画分支过程与Lévy过程之间的联系,金融资产波动率以及违约风险强度等方面具有广泛的应用。
2.
The paper [8] (2002) observed that a symmetry result between floating and fixed strike Asian options in the case of Black-Sholes model, then, The paper[11] extended this result by considering a general Levy process as the driving process of the underlying.
本文进一步推广了[11]结果,首先利用变换计价单位的方法和半鞅过程的对偶特征证明半鞅普通幂驱动的浮动敲定价与固定敲定价亚式期权的等价结果,然后在推广的半鞅的随机幂和普通幂关系的基础上,给出半鞅驱动的浮动敲定价与固定敲定价亚式期权的等价关系,并且给出了在不同Lévy过程上的应用。
5)  strong Levy process
强Lévy过程
6)  Lévy Processes
Lévy过程
补充资料:Lévy度量


Lévy度量
Levy metric

  功y度量【I初川州对c;JIe,H MeTp“Ka] 一维随机变量的分布函数(dis苗bution fiinction)空间了中的一种度量,即对任意F,G〔_式令 L三L(F,G)==诫{::F(x一。)一:成G(x)续F(x+。)+。,丫x}.这是由珑岁引出的(见[IJ).如果在F和G的图之间画上边平行于坐标轴的正方形(在图的不连续点添上垂直线段),则创门之中最大的边长就是L. 肠理度量可以看作L柳一 npoxo即。度母(脱vy一Pro幻lorov nr州c)的特殊情形.L己Vy度量的定义可以延拓到所有R’上的非降函数类M上(度量允许取无穷值). I户叮度量最重要的性质.1)U甲度量导出L二中的弱拓扑(见分布的收敛(dis们butions,conVer罗nl羌of)).度量空间(了,L)是完全可分的.M中函数序列按度量L的收敛性等价于完全收敛. 2)如果F〔M,且若令 F一、(x)二inf{t:F(t)o)是分布F的绝对矩(a比ol-ute伽nrnt),则 L(F,E)簇(口,(F))rl(r+’). 6)M上的L台y度量与积分平均度量 ,、一,1(:,G)一丁。;(x)一G(、)}汉x之间的关系是 LZ簇P1’ 7)M上的L6vy度量与一致度量 户=p(F,G)=suP}F(x)一G(x)}之间的关系是 L簇p蕊L+mm{Q;(L),Q。(L)},(*)其中 Q;(x)=suP}F(t+x)一F(t)1(Q;(x)是F‘了的集中函数(田功比泊加山nfL田ctjon)).特别地,如果函数之一,例如G,有一致有界的导数,则 。([l+s驴G’(x)]L·(*)的一个推论是当极限分布连续时弱收敛和一致收敛等价的玛lya .1’J IHBeHK。定理. 8)如果凡,。(x)=F(。x+a),其中a和‘>O是常数,则对任意F,G只犷, L(6F,“G)蕊‘L(Fa.,,G。.。)(特别地,脱Vy度量对于分布的推移是不变的),且 从L(凡,,,G。,。)一,(F,G). 9)如果f,g是与分布函数F,G相应的特征函数(cha田日比ristic丘mc石on),则对任意T>C, T 二,。。、,1 r.,,」、,、dt二hiT L(F,G)蕊去1 If(r)一g(t)i牛+Ze,摆es. 7r公’J““‘”t一T 砚四度量的概念可以推广到R”上分布函数的‘清形.【补注】注意:在苏联数学文献(且在上面的主要文章)中,分布函数通常是左连续的,而在西方文献中,它们是右连续的.所以在2)和7)中必须稍作改变. 设F是一分布函数,或更广义地,是一个非降左连续函数,则F具有可数的不连续点集.这个集合的补集称为F的连续集(contin山ty set)C(F).分布函数序列F。称为弱收敛于分布F,如果在F的连续集C(F)上收敛.如果还有F。(十的)~F(co)及F。(一①)~F(一co),则称此序列完全收敛(亦见分布的收敛(conVe耳罗nce of distribu石ons)和收敛性的类型(conVe班男nCe,t作岛of)).
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条