说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 幂等MV-代数
1)  idempotent MV-algebra
幂等MV-代数
2)  MV-algebra
MV-代数
1.
Lattice Inplication Algebra, MV-algebra and Bounded Commutative BCK-algebra;
格蕴涵代数、MV-代数和有界可换的BCK-代数
2.
Relation between R_0-algebras and MV-algebras;
R_0-代数与MV-代数的关系
3.
The Representation Theorem of MV-algebras by Means of Fuzzy Topology;
MV-代数的Fuzzy拓扑表现定理
3)  MV-algebra
MV代数
1.
The Simplified Forms of Definition of MV-algebra;
MV代数定义的蕴涵简化形式
2.
In this paper,some notions of weak FI-algebra and weak MV-algebra are introduced and their properties are studied.
本文引入弱FI代数、弱MV代数的概念 ,研究了它们的一些性
3.
In addition, the essay studys the relation ship between sub Hilbert-algebra and BCI-algebra, FI-algebra, Hilbert-algebra and MV-algebra.
此外 ,还讨论了亚Hilbert代数与BCI_代数、FI代数 ,HFI代数、MV代数之间的联系 。
4)  MV Algebra
MV代数
1.
The foundation to unify MV algebra and R_0 algebra;
MV代数与R_0代数的统一基础
2.
Equivalent characterization of R_0 algebra and MV algebra
R_0代数,MV代数的等价刻画
5)  MV-algebras
MV-代数
1.
MV-algebras ,R0-algebras ,Implicative algebras ,FI-algebras ,BL-algebras and Residual Lattice;
MV-代数、R_0-代数、格蕴涵代数、FI-代数、BL-代数与剩余格
2.
In this paper,we studied the relations between valuations and filters in some fuzzy logic algebras,such as MV-algebras,Π-algebras,G-algebras,R0-algebras,etc.
通过研究MV-代数、Π-代数、G-代数、R0-代数等模糊逻辑代数的赋值(从模糊逻辑代数L到单位区间[0,1]的同态)与滤子之间的关系,建立了MV-代数、Π-代数、G-代数、R0-代数等模糊逻辑代数的Loomis-Sikorski表现定理。
6)  MV-algebras
MV代数
1.
NML algebras is the common base of MV-algebras and Ro-algebras.
NML代数是MV代数和NM(R_0)代数的共同基础,其系统在几类重要的逻辑系统中居于承上启下的地位,在NML代数中引入滤子(理想)这个工具以后,可以证明许多代数系统具有可嵌入性,从而为这些形式系统具有完备性作了准备。
2.
The relationship between R_0-algebras and MV-algebras is developed, and a kind of radical of R_0-algebras is proposed.
讨论了R0代数与MV代数的关系,给出了R0代数的一种根。
补充资料:幂零Lie代数


幂零Lie代数
Lie algebra, nilpotent

幂零lie代数【liealgebI’a.浦训t即t;瓜朋~。代Hm明盯e6Pal 域k上满足下列等价条件之一的代数(司罗bla)g: l)有g的理想的有限降链{9.}。“、。,使得g。=g,g。={o},且对o簇i1,则其换位子理想的余维数codim【g,g」》2.特别地,如果dinlg簇2,则g是交换的.唯一的非交换的三维幂零Lie代数g同构于n(3k).对于几个小维数(当k=C,对于dinig续7)幂零Lie代数已经开列出来,但仍然没有它们分类的一般途径(1989). 幂零Lie代数(早期,它们被称为特殊Lie代数(51不戈诫Liea】罗b几璐)或O阶Lie代数)在5 .Lie关于微分方程积分方法研究的第一阶段就已经遇到了.可解lie代数(L记al罗bra,501铂b】e)的分类在一定意义下归结为枚举幂零Lie代数.在任意有限维Lie代数中都有一个最大的幂零理想(【21的术语,诣零根(成mdical)).另一个幂零理想也被考虑了—不可约的有限维表示的核的交集(幂零根,亦见lie代数的表示(rePn乏ellta-tion of a Lie algebm))(见【11,【4」).如果r是代数g的根,则幂零根n与 汇g,:]=[g,g]自r重合.商代数g/n是约化的(见约化块代数(玩司罗-腼,阁ucti祀)),并且n是有此性质的最小的理想.如果chark=O,则诣零根由所有使得adx幂零的x〔T组成. 研究C上约化Lie代数g,自然提出幂零子代数,它们是抛物子代数(parabelic su加】罗bra)的幂零根.当g=gI(V)时,这些幂零子代数与上面考虑过的子代数n(F)重合.9的一个Borel子代数(见Borel子群(Borel subgrouP))是g的一个由幂零元组成的极大子代数,不计共扼意义下是唯一的.更广的一类幂零L记代数由g的抛物子代数的由幂零元素组成的任意理想形成.当g=叭(V)时,这些幂零Lie代数已在【6]中被分类〔标准诣零代数〔standa记nila」geb闭)),而一般情形下在【7」中. 一个幂零Lie代数的中心必是非平凡的,而任意一个幂零Lje代数均可由幂零代数的中心扩张列得到.幂零Lie代数类关于子代数、商代数、中心扩张、有限直和是封闭的.特别地,n(n,k)的任意子代数是幂零的.反之,任意一个有限维幂零Lie代数必然同构于n(m,k)的一个子代数,对某个m(如果chark=0);这是八d。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条