说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 随机比例延迟微分方程
1)  Stochastic pantograph delay equation
随机比例延迟微分方程
2)  Neutral stochastic pantograph equations
中立型随机比例延迟微分方程
3)  multi-pantograph equation
多比例延迟微分方程
1.
This paper is concerned with the stability of Rosenbrock methods with variable stepsize applied to multi-pantograph equation y′(t)=λy(t)+lk=1μ_ky(q_kt),λ,μ_k∈C,0<q_l<…<q_2<q_1<1.
主要讨论了用一类变步长Rosenbrock方法求解多比例延迟微分方程y′(t)=λy(t)+∑lk=1μky(qkt),λ,μk∈C,0
4)  nonlinear pantograph equation
比例延迟微分方程
1.
This paper deals with the numerical stability of implicit Euler method for nonlinear pantograph equation in which constant stepsize and variable stepsize are applied.
讨论非线性比例延迟微分方程隐式Euler法的数值稳定性,其中步长采用定步长和变步长两种方式。
5)  stochastic differential delay equations
随机延迟微分方程
1.
T-stability of the euler-maruyama numerical method for the stochastic differential delay equations;
随机延迟微分方程Euler-Maruyama数值方法的T-稳定性
6)  stochastic delay differential equations
随机延迟微分方程
1.
Only the Euler method is popular and efficient among the numerical methods for the stochastic delay differential equations,but its order of convergence is only 1/2.
随机延迟微分方程数值方法中欧拉方法是唯一较为成熟、有效的方法,但欧拉方法的收敛性差,其收敛阶仅为12。
2.
This paper investigates the adapted Milstein method for solving linear stochastic delay differential equations(SDDEs).
研究随机延迟微分方程(stochastic delay differential equations)的数值求解问题,将改造后的Milstein方法用于求解此类问题,精度较高。
3.
In the past several decades, stochastic delay differential equations and stochasticVolterra integral equations have been widely applied in many fields of science, such as inautomatic control, biology, chemical reaction engineering, medicine, economics, demog-raphy etc.
近几十年来,随机延迟微分方程与随机Volterra积分方程已经被广泛地应用到自动控制、生物学、化学反应工程、医学、经济学、人口学等众多领域中。
补充资料:随机微分方程
      见随机积分。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条