说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 线性比例延迟微分方程组
1)  linear system of pantograph equation
线性比例延迟微分方程组
1.
The asymptotic stability of Rosenbrock methods with variable stepsize for the linear system of pantograph equation was discussed, and it is shown that strictly stable at infinity Rosenbrock method with variable stepsize can preserve the asymptotic stability of underlying linear system.
讨论用一类变步长Rosenbrock方法求解线性比例延迟微分方程组的渐近稳定性,证明了在无穷远点严格稳定的变步长Rosenbrock方法能够保持原线性系统的渐近稳定性。
2)  nonlinear pantograph equations
非线性比例延迟微分方程
1.
Linear θ ? methods with variable stepsize are applied to nonlinear pantograph equations and the conditions for the presented methods to be asymptotic stability are obtained.
应用变步长的线性θ -方法于非线性比例延迟微分方程,获得了其渐近稳定的条件。
3)  multi-pantograph equation
多比例延迟微分方程
1.
This paper is concerned with the stability of Rosenbrock methods with variable stepsize applied to multi-pantograph equation y′(t)=λy(t)+lk=1μ_ky(q_kt),λ,μ_k∈C,0<q_l<…<q_2<q_1<1.
主要讨论了用一类变步长Rosenbrock方法求解多比例延迟微分方程y′(t)=λy(t)+∑lk=1μky(qkt),λ,μk∈C,0
4)  nonlinear pantograph equation
比例延迟微分方程
1.
This paper deals with the numerical stability of implicit Euler method for nonlinear pantograph equation in which constant stepsize and variable stepsize are applied.
讨论非线性比例延迟微分方程隐式Euler法的数值稳定性,其中步长采用定步长和变步长两种方式。
5)  Stochastic pantograph delay equation
随机比例延迟微分方程
6)  linear delaydifferential equations1991 Mathematies Subject Classifications
线性延迟微分方程
补充资料:线性椭圆型偏微分方程和方程组


线性椭圆型偏微分方程和方程组
inear elliptic partial differential equation and system

算子(1)的阶数是偶的,且对任意一对线性无关向量七和七’,多项式(关于T) 艺a。(x)(古+:心‘)“ !区卜m恰有m’=m厂2个带负虚部的根及带有同样数目的正虚部的根,则称算子(l)是真椭圆型的(properlyel-如出).当n)3时,任一椭圆型算子均是真椭圆型的,因此这个定义本质上仅对n=2时提出的. 在线性椭圆型偏微分方程理论中,利用方程右端项及边界条件的范数得到解的范数的先验估计方法起着重要的作用.C.H.EepHunre俪(见f6])开始系统地使用这些估计,较近的发展要归之于J.Schauder(见【7」).schauder估计关注于区域D内具有H61der连续系数的二阶线性椭圆型偏微分方程的解,且有两种形式.第一形式的估计(“内”估计)是在任何紧集KCD上利用suP}川及方程右端项的HOlder常数和模得到所含的直到二阶的导数和它们的H6】der常数的估计.而第二形式的估计(“直到边界”的估计)关注于边值问题.在此,同样一些量被估计了,但是在问题中的区域的闭包内进行,并且在估计中出现边界条件右端项的范数. Scha比ler估计已进一步推广到一般线性椭圆型偏微分方程和边值问题(见【71).这些估计的导出是基于位势理论.借助于单位分解,对它们可给出其局部特性,并且事情就化为这样一些奇异积分算子范数的估计,在内估计中此奇异积分算子表示为和基本解相联系的函数的一个卷积,而在直到边界的估计中则是与在某标准区域内相应边值问题的G代犯n函数相联系的函数的卷积.这些估计最早是在HOlder空间C“的度量下得到的,它们已推广到C仗汕leB空间评;(L,估计),并且是对广义解. 对于强椭圆型算子存在称为G脚婉不等式(G遏r-由瑶袖闪回lty)的先验估计,这个不等式是用另外方法得到的.它处于对研究边值间题的一个基本处理方法的中心(Hjlberl空间方法), 在线性椭圆型偏微分方程理论中,基本解处于一个重要的地位.对具充分光滑系数的算子(1),其基本解(仙幻田1℃nial solution)定义为满足条件 了“‘,(、)‘(;,,)‘;一,(,),对所有,‘C:的函数J(、,y)二J,(*).从广义函数理论的观点来讲,这意味着 Jy“占y,其中右端是Din‘的占函数. 线性椭圆型偏微分方程的基本解对这样一些方程是存在的二带有解析系数的方程(于是它们本身是解析的),具无穷次可微的系数的方程(于是它们属于C。类的)以及许多另外一些方程,这些方程的系数具有较弱的限制.对于由最高阶爪=Zm’项组成的常系数椭圆型算子L。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条