1) stochastic pantograph differential equations
随机比例方程
1.
To establish the LaSalle-type asymptotic convergence theorem for the solutions of stochastic pantograph differential equations.
建立随机比例方程解析解的LaSalle-型渐进收敛定理,据此得到随机比例方程解析解渐进稳定的条件,给出一个例子。
4) pantograph equation
比例方程
1.
H_α-stability of modified Runge-Kutta methods with variable stepsize for neutral pantograph equation;
中立型比例方程变步长改进的Runge-Kutta方法的H_α-稳定性(英文)
5) Propotional equations method
比例方程法
6) ratio equation group
比例方程组
1.
To implement this method,the concept of ratio equation group (a special system of linear equations) is presented and an algorithm with linear time-space complexity is devised to find its simplest solution.
为实现该方法,提出了比例方程组(一种特殊线性方程组)的概念并设计了求解方程组最简解的线性时空复杂度的高效算法。
补充资料:随机微分方程
见随机积分。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条