1) Nonlinear stochastic delay differential equations
非线性随机延迟微分方程
1.
Convergence of semi-implicit Euler methods for nonlinear stochastic delay differential equations;
非线性随机延迟微分方程半隐式Euler方法的收敛性
2.
The error analysis of Euler-Maruyama methods applying to a general class of nonlinear stochastic delay differential equations was concerned with.
首先利用附近已有节点上的值通过插值对延迟项进行数值逼近,这是一种崭新的尝试;然后针对较一般情形下的一类非线性随机延迟微分方程初值问题,得到了带线性插值的Euler-Maruyama方法在均方意义下是收敛的理论结果,它部分推广了已有文献中的相关结论。
3.
The mean-square stability of Milstein methods for the nonlinear stochastic delay differential equations was concerned with.
在一维情形下,研究了一类非线性随机延迟微分方程初值问题,证明了如果问题本身满足零解是均方渐近稳定的充分条件,那么当漂移项满足一定的限制条件时,Milstein方法是MS-稳定的与带线性插值的Milstein方法是GMS-稳定的理论结果。
2) nonlinear delay differential equations
非线性延迟微分方程
1.
This paper deals with the exponential stability of a class of nonlinear delay differential equations with multiple small delays.
本文研究了一类带多个小滞量的非线性延迟微分方程的指数稳定性,证明了在适当条件下,上述延迟微分方程可保留相应常微分方程的指数稳定性。
3) stochastic differential delay equations
随机延迟微分方程
1.
T-stability of the euler-maruyama numerical method for the stochastic differential delay equations;
随机延迟微分方程Euler-Maruyama数值方法的T-稳定性
4) stochastic delay differential equations
随机延迟微分方程
1.
Only the Euler method is popular and efficient among the numerical methods for the stochastic delay differential equations,but its order of convergence is only 1/2.
随机延迟微分方程数值方法中欧拉方法是唯一较为成熟、有效的方法,但欧拉方法的收敛性差,其收敛阶仅为12。
2.
This paper investigates the adapted Milstein method for solving linear stochastic delay differential equations(SDDEs).
研究随机延迟微分方程(stochastic delay differential equations)的数值求解问题,将改造后的Milstein方法用于求解此类问题,精度较高。
3.
In the past several decades, stochastic delay differential equations and stochasticVolterra integral equations have been widely applied in many fields of science, such as inautomatic control, biology, chemical reaction engineering, medicine, economics, demog-raphy etc.
近几十年来,随机延迟微分方程与随机Volterra积分方程已经被广泛地应用到自动控制、生物学、化学反应工程、医学、经济学、人口学等众多领域中。
5) stochastic differential delay equation
随机延迟微分方程
1.
T-stability of the simi-implicit Euler method for the stochastic differential delay equations;
随机延迟微分方程半隐式Euler方法的T-稳定性
2.
This article considers the p-th moment stability of neutral stochastic differential delay equations with multiple functional delays.
本文考虑具有多个函数时滞的中立型随机延迟微分方程p阶矩稳定性。
补充资料:非线性偏微分方程
非线性偏微分方程
noil-linear partial differential equation
非线性偏微分方程【咖J.翻r,而I山价拍函坛la甲.d阅;He翻e面.oeyP姗e皿ec,aC几。,nPO,3的月”曰M一」 一个形如 F(x,u,…,D“u)“0(1)的方程,其中x=(x.,…,x。)任R“,u=(“:,一,“。)〔R’,F=(F,,一,F*)‘R“,:=(:.,…,:。)是由非负整数:,,…,:。组成的一个多重指标,D’二D寸‘二D二·,D‘=a/刁x‘(泛=1,…,。).在复值函数的情形下,可类似地定义非线性偏微分方程.若k>1,通常称为向量的非线性偏微分方程或非线性偏微分方程组.方程中出现的最高阶导数的阶数称为(l)的阶. 最为熟知的一个非线性方程是M加犯e.All妙耽方程(M。刀罗一Am乒re叫Ua石on)}口2,J}石‘_、a Zu detl二竺竺一!十)A .fx,“,Du)下‘-于一一+ 一’}口‘.刁‘,}i,仁,‘一‘,、‘”一’一’口x;刁xj +B(x,u,Du)‘0;(2)此处及以下,Du二(D、u,二‘,D。u), 若k=阴且F关于最高阶数所对应的变量是可微的,方程(l)的类型由F关于这些导数的主要线性部分的类型所定义(见偏微分方程(山玉沈n往目闪叩-tion,paJ石al)).对于相应的变量的导数(或由微分运算所产生的导数),一般地,人们相应地赋予一个确定的权.例如,在非线性热传导方程中, 。。,「。。刁,ul 一二,-=1 IX,。X。U—.一.丁--布,l, 口x.一L一口xZ口x三」此处日f/日pZ:>o,尸2:拱口’u/刁x{,则导数刁f/ap之:有权为2. 因为(l)关于最高阶导数的线性化是在一个固定解的邻域内进行的,(l)的类型将可能依赖于这个解(对照线性方程,甚至在一固定点x处).例如,方程 单华+旦兰生一旦生一f(二二二,、(3、 日x{口x左刁x:在具日“/口x:>o的解。处为椭圆型的,而在具口u/刁x:<0的解“处则为双曲型的. 一个方程的类型决定了此方程的边值(混合)间题是否适定以及影响研究它们的方法. 若函数F线性地依赖于它的最高阶导数,则(1)称为拟线性方程(q班‘i一恤份r闪Uat10n).例如,(3)是拟线性的.否则,方程称为是本质非线性方程(邸cnt访lly non七lx分r叫m石on).例如,Mo卿一内np-吮方程(2)是本质非线性的. 若一个拟线性方程的最高阶导数的系数不依赖于解(或它的导数),则方程称为弱非线性方程(w戈月ynon刁11长以r叫Uation)、例如,方程 A“=f(x,“,D“)(4)是弱非线性的. 拟线性和弱非线性偏微分方程之间的区分是承担了一个有条件的特性而不反映方程的内在性质.弱非线性方程可能有较拟线性甚至本质非线性方程更强的非线性性质.例如,存在形如(4)的弱非线性方程,它的在一有界区域内的一个给定的D州ehlet问题有可数多个不同的解. 形如(1)的方程可在全空间R”内考虑,或者在它的某一子域内研究.在第一种情形下,解空间的定义含有在无穷远处解的性态的条件.而在区域的情形下,人们在边界上或其一部分上提一个或更多的边界条件.这些边界条件同样可含有非线性算子.一个非线性偏微分方程连同一个边界条件(或一些边界条件)一起形成一个非线性问题,此问题必须在一个适当的函数空间内讨论.这个解空间的选取由该区域内的非线性微分算子F及边界算子的结构所决定.一个非线性问题的解空间的选取对问题的讨论是一个本质的因素.例如,对如下非线性问题:在有界区域oc=R”内,,。落。(一‘)”,”‘(,”‘ul’一’sgn”“U)一f(x),p>‘, 在边界刁。上,D尹u:oO,1刀l蕊m一1,此问题对应于C以沁J记B空间W叹Q).对于其对偶空间评子“(。)二(评了(。))’,q一’千p一’=1中任一函数f,。此问题在心(川内有唯一的解·此处及以下,W誉(。)是所有在Q内无限次可微且有紧支集的函数所成的集合在。石叨eB空间W君(。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条