|
说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
|
|
1) basic system of inequalities
基本不等式组
2) basic inequality
基本不等式
1.
Demonstrated through the variants and deductions of basic inequality a2+b2≥±2ab, it is proved t simple mathematical forms which can solve many complicated problems, are to be paid more attention.
通过基本不等式a2+b2≥±2ab的变形和引伸证明已有定理,表明简单的数学形式可以解决许多复杂的问题,应予以重视。
2.
Spread and application of basic inequality deformation a 2b 2≥2ab is given.
给出基本不等式a2 +b2 ≥ 2ab某一变形的推广及其应
3.
This article explains that the basic inequality solves the problems of mathematics in the middle school mathematics teaching.
阐述了基本不等式在中学数学解题中的运
3) fundamental inequality
基本不等式
1.
The Fundamental Inequality of K-quasiconformal Meromorphic Mappings and its Application;
K-拟共形亚纯映射的基本不等式及其应用
2.
The fundamental inequality of angular domain for quasimeromorphic mapping is derived through complicated calculation.
本文通过计算,导出了角域内拟亚纯映射的基本不等式-应用它容易证明超越拟亚纯映射存在Nevanlinna方向
4) expanded basic inequalities
扩展基本不等式
1.
The Schur type four-order,five-order,six-order partition bases from generating in four variables,five-order in five and six variables are given;by which some expanded basic inequalities are constructed.
对多元对称不等式研究进行了简单的回顾和综述;提出了研究多元不等式的生成基方法,这个方法包括schur型生成分拆基和平方型生成分拆基两部分;给出了4元4次、4元5次、4元6次、5元5次以及6元5次schur型生成分拆基,并用这些基构造了若干扩展基本不等式;指出schur型生成分拆基与多元schur分拆基在形式上是类似的,但各有其特点;对其他类型的分拆基进行了初步探讨和反思;提出了3个问题。
5) fundamental matrix inequality
基本矩阵不等式
1.
Using the fundamental matrix inequality,we obtain the solvability condition for the two-sided Nevanlinna-Pick problem in the class C m(T,2π-T).
用基本矩阵不等式方法给出Cm(T ,2π -T)函数类中m×m的矩阵函数双切Nevanlinna -Pick插值问题的可解条
6) Nevanlinna inequalities
Ahlfors型基本不等式
补充资料:Harnack不等式(对偶Harnack不等式)
Harnack不等式(对偶Harnack不等式) quality (dual Hatnack inequality) Harnack in- 【补注】一直到G的边界的H助nack不等式,见【AZI.l翻..‘不等式(对停H山丸朗k不等不)[ Har.改沁-勺函勺(d切红Hat’I犯‘k如为uaJ卿);rap.姗二p魄HcT助(月加湘oe)] 给出正调和函数的两个值之比u(x)/“(y)的上界和下界估计的一个不等式,由A.Hai,剐火(汇IJ)得到.令u)0是n维E议当d空间的区域G中的一个调和函数;令E。(y)是中心在点y处半径为;的球{x:}x一y!<;}.若闭包万了刃.CG,则对于所有的、“凡(,),o 0是常数,亡“(省:,…,氛)是任一。维实向量,叉‘G.不等式(2)中的常数M仅依赖于又,A,算子L的低阶项系数的某些范数以及G的边界与g的边界之间的距离. fy,1, …粤馨 对于形如u:+Lu“0的一致抛物型方程(算子L的系数可以依赖于t)的非负解:(x,t),类似于1压ar-恤比不等式的不等式也成立.在此情形下,对于顶点在点(y,动处开口向下的抛物面(图a) {(x,t川x一,I’<。,(T一t),:一v,簇t簇:}的内部的点(x,t),只能有单边的不等式(fs」): u(x,r)(M妇(y,T),这里,M依赖于y,T,又,A,料,,,算子L的低阶项系数的某些范数,以及抛物面的边界与在其中“(义,t))0的区域的边界之间的距离.例如,如果在柱形区域 Q二Gx(a,b],中“〕O,此外,歹CG,并且如果刁G与刁g之间的距离不小于d(>0),而d充分小,那么在gx(a一矛,bJ中不等式 。(、.t、___/,、一。1,.:一:.八 1。,二之二止,二止匕成几11止二一一丈‘.+一+11 u气y,T)\下一I“/成立(协J).特别地,如果在Q中u)0(图b),且如果对于位于Q中的紧集Q,和QZ有 占“们山n(t一:)>0, (义,t)‘Q- (y.下)〔QZ那么有 n知Lxu(x,t)簇M nunu(x,t), (x,‘)‘QZ(x,‘)‘Q-其中M“M(占,Q,QI,QZ,L).函数 ·、·,‘卜exn(‘睿,、‘一暮“:)—对于任意的k,,…,气,它是热方程u,一△拟“0的解—表明在抛物型情形下双边估计的不可能性,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条
|