1) primitive invariant
基本不变式
2) basic invariant
基本不变量
1.
This paper has proved that ATA is the basic invariants of orthogonal transformIt has given necessary and sufficient conditions for the superposition of movement between two finite point ranges and sets.
证明n×m矩阵A的正交变换基本不变量是ATA,当A=TB时,给出正交矩阵T具体形式、有限点列和有限点集合经过刚体运动可重合的充分必要条件,最后对一个实例进行计算。
2.
There are many invariants for a transformation group, but they can be composite by some basic invariant at all.
证明A元基本不变量是存在的 ;给出一个充分必要条件 ,用于判定不变量的基本性 。
3) basic inequality
基本不等式
1.
Demonstrated through the variants and deductions of basic inequality a2+b2≥±2ab, it is proved t simple mathematical forms which can solve many complicated problems, are to be paid more attention.
通过基本不等式a2+b2≥±2ab的变形和引伸证明已有定理,表明简单的数学形式可以解决许多复杂的问题,应予以重视。
2.
Spread and application of basic inequality deformation a 2b 2≥2ab is given.
给出基本不等式a2 +b2 ≥ 2ab某一变形的推广及其应
3.
This article explains that the basic inequality solves the problems of mathematics in the middle school mathematics teaching.
阐述了基本不等式在中学数学解题中的运
4) fundamental inequality
基本不等式
1.
The Fundamental Inequality of K-quasiconformal Meromorphic Mappings and its Application;
K-拟共形亚纯映射的基本不等式及其应用
2.
The fundamental inequality of angular domain for quasimeromorphic mapping is derived through complicated calculation.
本文通过计算,导出了角域内拟亚纯映射的基本不等式-应用它容易证明超越拟亚纯映射存在Nevanlinna方向
6) typical basic invariant
标准基本不变量
补充资料:变量与变量值
可变的数量标志和所有的统计指标称作变量。变量的数值表现称作
变量值,即标志值或指标值。变量与变量值不能误用。
变量值,即标志值或指标值。变量与变量值不能误用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条