说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 最简不等式组
1)  the simplest linear inequalities
最简不等式组
2)  Inequalities [英][,ini'kwɔliti]  [美][ɪnɪ'kwɑlətɪ]
不等式组
1.
An entropy function for inequalities and a Boltzmann entropy expression for the gap function of the variational inequality problem (VIP) are presented.
利用极大熵函数方法将不等式组及变分不等式的求解问题转化为近似可微优化问题,给出了不等式组及变分不等式问题近似解的可微优化方法,得到了不等式组和变分不等式问题的解集合的示性函数。
3)  system of inequalities
不等式组
1.
This paper is concerned about two common problems of the square of plane figure and double integral,constructs two different kinds of system of inequalities by skifully using the boundary line,and chooses integration variables and the order of repeated integral quickly and truly on the base of the shape of figures and integrands.
本文针对平面图形面积和二重积分两个常见问题,巧用四条边界线建立两种不同形式的不等式组,同时结合图形形状和被积函数,快速而正确地选择积分变量和累次积分次序,简化了计算,提高了运算能力和解题速度。
4)  best possible inequality
最佳不等式
5)  sharp inequality
最优不等式
6)  equality and inequality
等式与不等式组
1.
The compatibility of a special class of equality and inequality systems is discussed.
讨论了一类特殊的等式与不等式组的相容性,给出了其相容的充分必要条件。
补充资料:Harnack不等式(对偶Harnack不等式)


Harnack不等式(对偶Harnack不等式)
quality (dual Hatnack inequality) Harnack in-

【补注】一直到G的边界的H助nack不等式,见【AZI.l翻..‘不等式(对停H山丸朗k不等不)[ Har.改沁-勺函勺(d切红Hat’I犯‘k如为uaJ卿);rap.姗二p魄HcT助(月加湘oe)] 给出正调和函数的两个值之比u(x)/“(y)的上界和下界估计的一个不等式,由A.Hai,剐火(汇IJ)得到.令u)0是n维E议当d空间的区域G中的一个调和函数;令E。(y)是中心在点y处半径为;的球{x:}x一y!<;}.若闭包万了刃.CG,则对于所有的、“凡(,),o0是常数,亡“(省:,…,氛)是任一。维实向量,叉‘G.不等式(2)中的常数M仅依赖于又,A,算子L的低阶项系数的某些范数以及G的边界与g的边界之间的距离. fy,1, …粤馨 对于形如u:+Lu“0的一致抛物型方程(算子L的系数可以依赖于t)的非负解:(x,t),类似于1压ar-恤比不等式的不等式也成立.在此情形下,对于顶点在点(y,动处开口向下的抛物面(图a) {(x,t川x一,I’<。,(T一t),:一v,簇t簇:}的内部的点(x,t),只能有单边的不等式(fs」): u(x,r)(M妇(y,T),这里,M依赖于y,T,又,A,料,,,算子L的低阶项系数的某些范数,以及抛物面的边界与在其中“(义,t))0的区域的边界之间的距离.例如,如果在柱形区域 Q二Gx(a,b],中“〕O,此外,歹CG,并且如果刁G与刁g之间的距离不小于d(>0),而d充分小,那么在gx(a一矛,bJ中不等式 。(、.t、___/,、一。1,.:一:.八 1。,二之二止,二止匕成几11止二一一丈‘.+一+11 u气y,T)\下一I“/成立(协J).特别地,如果在Q中u)0(图b),且如果对于位于Q中的紧集Q,和QZ有 占“们山n(t一:)>0, (义,t)‘Q- (y.下)〔QZ那么有 n知Lxu(x,t)簇M nunu(x,t), (x,‘)‘QZ(x,‘)‘Q-其中M“M(占,Q,QI,QZ,L).函数 ·、·,‘卜exn(‘睿,、‘一暮“:)—对于任意的k,,…,气,它是热方程u,一△拟“0的解—表明在抛物型情形下双边估计的不可能性,
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条