说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 模糊Lyapunov方法
1)  fuzzy Lyapunov method
模糊Lyapunov方法
1.
The stability analysis and fuzzy controller design problem of T-S continuous-time fuzzy system were discussed based on news fuzzy Lyapunov method.
研究了在新型的模糊Lyapunov方法下连续T-S模糊控制系统稳定性和模糊控制器设计问题,首先,得出了自由系统新的稳定性充分条件,这个条件具有更大的宽松性;然后基于一系列线性矩阵不等式设计了模糊控制器,这些矩阵不等式可以利用凸优化技术来进行解决。
2)  fuzzy Lyapunov function approach
模糊Lyapunov函数方法
1.
A new stability condition was proposed based on fuzzy Lyapunov function approach,and further,by using matrix transformation,it was converted to a set of linear matrix inequalities (LMIs),which is more relaxed.
考虑到系统状态不易测量,利用输出反馈设计模糊控制器;基于模糊Lyapunov函数方法提出一新的稳定性判别条件,利用矩阵变换把该条件转化为一组线性矩阵不等式(LMIs),该条件具有更大的宽松性。
3)  fuzzy Lyapunov function
模糊Lyapunov函数
1.
Based on a more general continuous model of actuator failure,the sufficient condition for the existence of state-feedback guaranteed reliable controller is derived from using fuzzy Lyapunov function and linear matrix inequality(LMI) technique.
在更一般性的连续型执行器故障模型基础上,运用模糊Lyapunov函数和线性矩阵不等式(LMI)技术,推导出状态反馈保性能可靠控制器存在的充分条件,并给出了最优化可靠控制器设计的拟凸优化方法。
2.
The quadratic stability of fuzzy descriptor system is investigated based on the fuzzy Lyapunov function.
针对T-S模糊广义系统,基于模糊Lyapunov函数研究了其渐近稳定性问题。
3.
The original systems can be generalized to augmented systems,then some admissible conditions for fuzzy descriptor systems are obtained based on a new fuzzy Lyapunov function and new fuzzy controller.
首先将原系统表示成增广系统,进而基于新的模糊Lyapunov函数和模糊控制器得到容许性条件。
4)  Lyapunov methods
Lyapunov方法
1.
Asymptotic stability analysis and stabilization for generalized systems via Lyapunov methods;
广义系统渐近稳定分析与镇定的Lyapunov方法
2.
Based on Lyapunov methods, the hierarchical motion planning of free-flying dual-arm space robots for obstacle avoidance is discussed.
以Lyapunov方法为基础,讨论了载体姿态与位置均不受控制的双臂空间机器人系统的避障碍分级非完整运动规划问题。
3.
With the assumption that the variable parameters are unavailable,a parameter estimate rule and an adaptive learning control law for autonomous rendezvous in the elliptical orbit are designed via Lyapunov methods.
在假设这些时变参数无法得到的情况下,采用Lyapunov方法设计了椭圆轨道下自主交会的参数估计规则和自适应学习控制律。
5)  Lyapunov approach
Lyapunov方法
1.
A nonlinear feedback controller, which can globally asymptotically stabilize the closed-loop system, was proposed based on the Lyapunov approach.
基于Lyapunov方法给出了使闭环系统全局渐进稳定的控制律,特别考虑了惯性张量矩阵的时变特性和不确定项对于姿态系统稳定性的影响,给出了相应的控制器设计方法。
2.
Although Lipschitz constants of function matrices and bounds of uncertainties were unknown,the Lyapunov approached guarantees the error system stab.
不必计算Lipschitz常数,也不必知道不确定参数的范围界限,但是Lyapunov方法仍然保证了误差系统的全局渐近稳定性。
3.
The Lyapunov approach was utilized to stabilize the observer error dynamics, and new stable conditions were constructed.
考虑了非线性项满足Lipschitz条件的非线性系统观测器设计问题,利用Lyapunov方法给出了新的判断观测误差稳定性的条件,并由所给的条件通过求解线性矩阵不等式来设计观测器。
6)  Lyapunov method
Lyapunov方法
1.
The integrated application of the Lyapunov method and feedback linearization method (including the differential method, direct feedback linearization method and backstepping method) with intelligent control methods (including fuzzy control, neural network control) and sliding-mode control, adaptive control, robust control and predictive control are surveyed.
介绍了非线性控制技术和几类先进控制策略的基本原理 ;综述了Lyapunov方法和反馈线性化方法(包括微分几何方法、直接反馈线性化方法和Backstepping方法 )与智能控制策略 (包括模糊控制、神经网络控制 )及与滑模控制、自适应控制、鲁棒控制和预测控制的综合应用。
2.
The analysis of dynamic performance of the overall system is performed by using Lyapunov method, which proved that by using the proposed method uniform ultimate boundness of close-lo.
使用Lyapunov方法对整个系统的动态性能进行分析,证明了在一定条件下此方法能保证闭环误差及网络权值一致最终有界。
3.
By using the Lyapunov method for linear neutral differential systems with time-varying delays,the problems of determining the global exponential stability and estimating the exponential convergence rate are investigated in this paper.
利用Lyapunov方法对变时滞的线性中立型微分系统的全局指数稳定性进行分析,并估计其指数收敛率,得到了两个实用的全局指数稳定性判据。
补充资料:模糊评价方法
模糊评价就是利用模糊数学的方法,对受到多个因素影响的事物,按照一定的评判标准,给出事物获得某个评语的可能性。将模糊评价方法用于信息系统效益评价,可以综合考虑影响信息系统的众多因素,根据各因素的重要程度和对它的评价结果,把原来的定性评价定量化, 较好地处理信息系统多因素、模糊性以及主观判断等问题。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条