说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 分段模糊Lyapunov函数
1)  Piecewise Fuzzy Lyapunov Function
分段模糊Lyapunov函数
1.
Analysis and Design of Fuzzy Systems Based on Piecewise Fuzzy Lyapunov Function;
基于分段模糊Lyapunov函数的模糊系统分析与设计
2.
Firstly, a new sufficient condition to check the stability of open-loop discrete T-S fuzzy systems is proposed after the definition of a discrete piecewise fuzzy Lyapunov function.
研究了基于分段模糊Lyapunov函数的离散T-S模糊控制系统稳定性分析及控制器设计问题。
2)  fuzzy Lyapunov function
模糊Lyapunov函数
1.
Based on a more general continuous model of actuator failure,the sufficient condition for the existence of state-feedback guaranteed reliable controller is derived from using fuzzy Lyapunov function and linear matrix inequality(LMI) technique.
在更一般性的连续型执行器故障模型基础上,运用模糊Lyapunov函数和线性矩阵不等式(LMI)技术,推导出状态反馈保性能可靠控制器存在的充分条件,并给出了最优化可靠控制器设计的拟凸优化方法。
2.
The quadratic stability of fuzzy descriptor system is investigated based on the fuzzy Lyapunov function.
针对T-S模糊广义系统,基于模糊Lyapunov函数研究了其渐近稳定性问题。
3.
The original systems can be generalized to augmented systems,then some admissible conditions for fuzzy descriptor systems are obtained based on a new fuzzy Lyapunov function and new fuzzy controller.
首先将原系统表示成增广系统,进而基于新的模糊Lyapunov函数和模糊控制器得到容许性条件。
3)  Piecewise Lyapunov function
分段Lyapunov函数
1.
Piecewise Lyapunov function is utilized to demonstrate the stability and H∞ performance of the system.
根据特性将系统建模为切换系统,利用分段Lyapunov函数对系统的稳定性及H∞性能进行论证,并以线性矩阵不等式(LMI)形式给出H∞控制器需满足的条件。
2.
Discrete T-S fuzzy model is considered as uncertain linear system,and a controller design method based on linear matrix inequality(LMI) and piecewise Lyapunov function is proposed.
为了探讨模糊控制系统的稳定性分析和设计方法,依据模糊控制理论,把离散T-S模糊模型看成是一个线性不确定系统,提出了基于线性矩阵不等式和分段Lyapunov函数的模糊控制器设计方法。
3.
Consequently,based on the piecewise Lyapunov function and considered the interactions among the fuzzy subsystems in each subregion,the relaxed stabilization conditions are derived for the switching DFBS.
然后,基于分段Lyapunov函数,同时考虑同一个子空间内不同模糊子系统之间的相互作用,得到了闭环系统放松的渐近稳定的充分条件。
4)  fuzzy Lyapunov-Krasovskii function
模糊Lyapunov-Krasovskii函数
1.
The H∞ control problem of discrete T-S fuzzy systems with time-delay are studied via fuzzy Lyapunov-Krasovskii function.
研究了离散时滞T-S模糊系统基于模糊Lyapunov-Krasovskii函数的H∞控制问题。
2.
The stability analysis and controller design problem of discrete T-S fuzzy model with delay are studied via fuzzy Lyapunov-Krasovskii function.
研究了离散时滞T-S模糊模型基于模糊Lyapunov-Krasovskii函数的稳定性分析及控制器设计问题。
3.
Based on the fuzzy Lyapunov-Krasovskii function(LFK),a fuzzy controller is designed to acquire globally asymptotical stability for the discrete uncertain fuzzy time-delay system with the method of parallel distributed compensation(PDC).
基于模糊Lyapunov-Krasovskii函数,应用并行分布补偿算法,设计了使模糊系统全局渐近稳定的控制器,提出并证明了一个新的判别闭环不确定离散时滞模糊系统鲁棒H∞渐近稳定的充分条件。
5)  fuzzy Lyapunov function approach
模糊Lyapunov函数方法
1.
A new stability condition was proposed based on fuzzy Lyapunov function approach,and further,by using matrix transformation,it was converted to a set of linear matrix inequalities (LMIs),which is more relaxed.
考虑到系统状态不易测量,利用输出反馈设计模糊控制器;基于模糊Lyapunov函数方法提出一新的稳定性判别条件,利用矩阵变换把该条件转化为一组线性矩阵不等式(LMIs),该条件具有更大的宽松性。
6)  continuous piecewise Lyapunov functions
连续分段Lyapunov函数
1.
Sufficient condition of stability is given by using continuous piecewise Lyapunov functions.
本文分析了在特定切换控制函数作用下,切换系统的稳定性,用连续分段Lyapunov函数讨论了切换系统稳定的充分条件。
补充资料:高斯函数模拟斯莱特函数
      尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
  
  
  式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
  
  
  其变量与STO有相似的定义;Ngi是归一化常数:
  
  
  rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
  
  ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条