1) linear matrix
线性矩阵
1.
By applying linear matrix inequality,the optimal constrained H∞ controller is also derived.
结合线性矩阵不等式变换,给出状态反馈最优H∞控制器的设计方法,仿真示例说明了设计方法的有效性。
2.
By using the linear matrix inequality approach,a sufficient condition for the existence of guaranteed cost controller is presented.
应用线性矩阵不等式方法,给出了系统保性能控制器存在的充分条件;并在这些条件可解时,给出了保性能控制器的表达式。
2) quasi linear matrix
拟线性矩阵
1.
The application of quasi linear matrix in determinant evaluation;
拟线性矩阵在行列式计算中的应用
3) linear matrix inequality
线性矩阵不等式
1.
Active vibration control strategy based on linear matrix inequality for rotor system;
基于线性矩阵不等式的转子系统振动主动控制
2.
Analysis of pinning control strategies based on linear matrix inequality;
基于线性矩阵不等式的牵制控制策略分析
3.
Tracking Control of Nonholonomic Chained-Form System Based on Linear Matrix Inequality
基于线性矩阵不等式的链式系统跟踪控制律设计
4) LMI
线性矩阵不等式
1.
The use of an LMI approach in cooling water temperature control system;
线性矩阵不等式在冷却水温度控制系统中的应用
2.
LMI-Based Robust Optimization Model of Loan Portfolio;
基于线性矩阵不等式的贷款组合鲁棒优化模型
3.
Design of Optimal Robust Excitation Controller Based on LMI;
基于线性矩阵不等式的最优鲁棒励磁调节器设计
5) linear matrix inequality(LMI)
线性矩阵不等式
1.
Using the Lyapunov functional method and the linear matrix inequality(LMI) tech-nique,the global exponential stability of neural networks with time-varying delays is studied.
利用Lyapunov泛函方法和线性矩阵不等式(LMI)技术,讨论了带有可变时延的神经网络的全局指数稳定性。
2.
H2,H∞ and mixed H2/H∞ state feedback control strategies for the rotor system under seismic excitation were developed by linear matrix inequality(LMI) to attenuate the transient vibration of the rotor system under random excitation and make it robust.
为了抑制随机激励作用下转子系统的瞬态振动并使转子系统具有鲁棒性,基于线性矩阵不等式(LMI),为地震激励作用下转子系统的振动主动控制设计了H2、H∞和H2/H∞混合状态反馈控制律。
3.
Based on the linear matrix inequality(LMI) approach,the system fault diagnosis problem can be solved by using the system s robust stability analysis method.
基于线性矩阵不等式(LMI)的方法,将故障检测问题转化为系统鲁棒稳定性的分析问题。
6) Linear Matrix Inequality (LMI)
线性矩阵不等式
1.
By applying Lyapunov functional method, this paper studies the robust Absolute stability of neutral Lurie control systems with time-varying uncertainties and presents delay-dependent sufficient conditions for the robust Absolute stability of the systems in terms of linear matrix inequality (LMI).
应用Lyapunov泛函方法,研究了具有时变结构不确定性的中立型Lurie控制系统的鲁棒绝对稳定性,给出了系统鲁棒绝对稳定的时滞相关充分条件,这些条件用线性矩阵不等式的形式给
2.
By using Lyapunov functional method and linear matrix inequality (LMI) approach, the absolute stability of a general neutral type of Lurie indirect control systems was studied.
利用Lyapunov泛函和线性矩阵不等式方法,研究了一般中立型Lurie间接控制系统的绝对稳定性。
3.
The negative effects of time delay of WAMS on the dynamic performance of the thyristor controlled series capacitor (TCSC) nonlinear controller are investigated and the linear matrix inequality (LMI) theory is proposed to design a TCSC controller not sensitive to communication and measurement time delays.
分析了广域测量系统的通信延迟时间对可控串联电容补偿器(TCSC)非线性控制器稳定特性的影响,基于线性矩阵不等式理论设计了TCSC控制器以提高电力系统对时滞的不敏感性,线性和非线性时域仿真结果验证了所设计的TCSC控制器的有效性。
补充资料:Cartan矩阵
Cartan矩阵
Cartan matrix
当它的Cartan矩阵是不可分解的:xndecom拼巧able),即在指标的某些置换后,不可能表为对角块矩阵. 令g=q、十十q。是g分解为单子代数的直和,A,是单I一ie代数g的C盯tan矩阵·则对角块矩阵 {…一{一:……是9的Cartan笼,阵.(对单Lze代数的Cartan矩阵的具体形式,见半单lje代数(Lie al罗bra,semi一slmple).) Cartan矩阵的分量“。二2恤等)/(“r·咐有下列性质: 拭.2:“‘()a,、Z,对,势了 以0二冷u/二11Cartan矩阵与用’‘三成元和关系来kjJ画q密切侧关即g中存在线性无关的生成兀e‘,厂、八,(i=飞、·…:)(称为典范生成元(以n、,,11以l罗nerators。),满足下歹,1关系: 卜,_用/氏h;I气州二“叮(2) }h,厂一“/」,lh‘寿}二以任意两个典范生成儿组可由q的自同构互相变换.典范产仁成元还满足关系 (ad引“’价二。,扭d厂)‘仁’.石二。,,若/,(3)据定义这里(adx汗一卜川对丁一给定的生成兀组。、fh(i一l,二,心关系(2)和(3)定义了g戈见[2〕). 对满足(I)的任意矩阵A,设以。,f,h,(i=l,;)为生成一f以(2),〔3)为定义关系的klLie代数为g妇),则乌训)是有限维的,当且仅当A是一个一半单bc代数的Cartan矩阵{3]I补注]满足条初门)的矩阵左定义一个有限维l玲代数,当且仪当它是王定的;在其他情况,如半正定情形,出现其他有趣的代数,见Kac一M以月y代数(K-a。M以刘y al罗bra),{A2」. 设L是特征为0的代数闭域上的半单Lic代数,则满足条件(2)的生成元e,厂,h,的集合也称为Cheva-lley生成元(Chevalley罗nerators)或Chevalley基份hevalley basis)这样的生成元的存在性定理称为C讹valley定理(Chevalley theorem).关系(2),(,;)定义Lie代数的结果常称为Serre定理(Serre th即。。、2)域K上带单位元的有限维结合代数A的Cartan琴阵是矩阵(ctj)(i·,一‘,“‘、‘),由有限维不可约左A模的完全集N!,…,从来定义.明确地说,气是满足Hom(月,N)并O的不可分解投射左A模月的合成列中凡出现的次数.对每个N,这样的只存在巨在同构意义下是唯一确定的 在一定情况下,〔artan矩阵〔”被证明是对称正定的,甚至C二D了D,这里D是整数矩阵。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条