1) linear matrix series
线性矩阵级数
1.
A high density and predictive model approach is established by the linear matrix series in order to estimate more.
该算法利用线性矩阵级数展开求和设计一个空间高密度多点预测模型,基于该模型实现空间高密度多点预测模型的建模和预测。
2) matrix progression
矩阵级数
1.
With the help of matrix number and matrix music radius concepts, combined with the conclusion about the limit and numeral progession, judgmnet methods and character of matrix progression unanimous convergence are provided.
借助矩阵范教和矩阵谱半径的概念,结合极限理论和数项级数的有关结论,给出了矩阵级数一致收敛的判定和性质。
2.
with the help of matrix number and matrix music radius concepts,combined with the conclusion about the limit and numeral progression,the paper gives judgement methods of matrix progression unanimous convergence.
借助矩阵范数和矩阵谱半径的概念,结合极限理论和数项级数的有关结论,给出了矩阵级数一致收敛的判定方法。
3.
Under the concepts of matrix progression and matrix norm and with the combination of limit theory, numerical progression and their related conclusions, two methods are given on how to decide the absolute convergence of matrix progression.
借助矩阵级数和矩阵范数的概念,结合极限理论和数项级数的有关结论,给出了矩阵级数绝对收敛的两种判定方法。
3) matrix series
矩阵级数
1.
he matrix function, matrix series and exponential matrix are defined.
定义了矩阵函数,矩阵级数及指数矩阵。
4) linear matrix
线性矩阵
1.
By applying linear matrix inequality,the optimal constrained H∞ controller is also derived.
结合线性矩阵不等式变换,给出状态反馈最优H∞控制器的设计方法,仿真示例说明了设计方法的有效性。
2.
By using the linear matrix inequality approach,a sufficient condition for the existence of guaranteed cost controller is presented.
应用线性矩阵不等式方法,给出了系统保性能控制器存在的充分条件;并在这些条件可解时,给出了保性能控制器的表达式。
5) matrix power series
矩阵幂级数
1.
According to the definition of matrix power series and the convergence property of the power series,using the type compare method,the thesis got and verified part convergence properties of the matrix power series.
根据矩阵幂级数的定义和数学分析中幂级数的收敛性质,运用类比的推理法,得到并验证了矩阵幂级数的部分相应的收敛性质。
6) parameterized linear matrix inequalities(PLMIs)
参数线性矩阵不等式
补充资料:d’Alembert准则(关于级数收敛性的)
d’Alembert准则(关于级数收敛性的)
d'Akmbert criterion (convergence of series)
如果 }u.,1 。一二]u。i则级数可能收敛也可能发散;两个级数 呈兴和呈一菩叫 自矿’m自在都满足这个条件,但第一个级数是收敛的,而第二个级数是发散的. 这个准则是J.d,A肠nbert确立的(1768). J’I,八.均刀p朋uea撰【补注】这个准则也称为比值检验法(mlio馏t),见[A 11.d,A如咧bert准则(关于级数收敛性的)【d’A如11加时州触.南n(。皿到段咨”沈Of Sed昭);八‘从aM6epa nPo3。奴} 对于数项级数 五u一如果存在数q,O
1. ”~田!u。!则这个级数发散.例如,对于一切复数z,级数 杀z” n.I月!绝对收敛,因为 I_”+11 }Z一} l(玲十l)!} 凡~仍}公一} }”:}而对于一切:砖。,级数艺篡1。!广发散,因为 俪」色山」兰兰上=十二. ”~田!n!2一!
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条