1) functions of bounded variation of order p
P次有界变差函数
1.
Using some results and methods of probability theory and Abel transformation,the paper has studied the approximation of a Baskakov type operators whose limits are Gamma operator for functions of bounded variation of order p,and the pointwise convergence theorem of these operstors are obtained.
运用概率论的一些方法和结论以及Abel变换,研究了一类极限为Gamma算子的Baskakov型算子对p次有界变差函数的逼近,得到了对该函数类的点态逼近度估计的逼近定理。
2) p-bounded variation function
p-有界变差函数
3) p-weak bounded variation function
p-弱有界变差函数
4) strongly bounded varition function
强有界变差函数
5) bounded variation function
有界变差函数
1.
It is found that the monotone sequence is colsely related to it,and very similar with the bounded variation functions,and reach the conclusion as follows: the class of bounded sequence the class of convergencal sequence the bounded variation sequence the bounded monotone sequence.
本文主要对囿变数列的特征作一些探讨,我们发现:它与单调数列关系密切,而且与有界变差函数十分类似,并得出如下关系:有界数列类收敛数列类囿变数列单调有界数列。
2.
In this paper,we give the relation between the class H~ω of function and the class of bounded variation function,and generalize the results of Torriani.
给出函数类Hω和有界变差函数类BV之间的关系,推广了Torriani的结果。
3.
We study the approximation of Szasz-Bézier Operaters within [0,∞) for functions of bounded variation function f,and obtain an accurate estimate on the rate of convergence of this type.
对有界变差函数f的Szasz-Bézier算子在区间[0,∞)上的收敛阶进行估计。
6) bounded variation
有界变差函数
1.
There by the concepts such as bounded variation,the Riemann-stieltjes integral are extended to the locally convex space.
把向量值正则函数推广到了局部凸空间,得到了局部凸空间中向量值正则函数在s(0,1)的有界性,同时,把有界变差函数及Riemann-Stieltjes积分推广到了局部凸空间。
2.
The consepts such as bounded variation,the Riemann-Stieltjes integrl are extended to the locally convex space.
把实变函数中的有界变差函数推广到了局部凸空间中,同时,把Riemann-Stieltjes积分推广到了局部凸空间中向量值函数,得到了局部凸空间中向量值函数Riemann-Stieltjes积分的一些非常有价值的性质。
补充资料:次邓州界
【诗文】:
潮阳南去倍长沙,恋阙那堪又忆家。心讶愁来惟贮火,
眼知别后自添花。商颜暮雪逢人少,邓鄙春泥见驿赊。
早晚王师收海岳,普将雷雨发萌芽。
【注释】:
【出处】:
全唐诗:卷344-38
潮阳南去倍长沙,恋阙那堪又忆家。心讶愁来惟贮火,
眼知别后自添花。商颜暮雪逢人少,邓鄙春泥见驿赊。
早晚王师收海岳,普将雷雨发萌芽。
【注释】:
【出处】:
全唐诗:卷344-38
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条