1) Bernstein operators
Bernstein算子
1.
On approximation by Meyer-Konig and Zeller operators and Bernstein operators in interpolation spaces;
Meyer-Konig and Zeller算子及Bernstein算子在内插空间中的逼近
2.
The best polynomial approximation and degree of weighted approximation of multivariate Bernstein operators;
最佳多项式逼近与多元Bernstein算子的加权逼近阶
3.
Simultaneous approximation by Bernstein operators;
Bernstein算子的同时逼近
2) Bernstein operator
Bernstein算子
1.
The direct and the inverse approximated theorem of the derivatives of the Bernstein operators with Jacobi weights;
Bernstein算子的导数加Jacobi权逼近的正逆定理
2.
Lagrange operator and Bernstein operator are two important operators which are used to deal with polynomial approximation problems.
Lagrange算子与Bernstein算子是用于处理多项式逼近问题的两个重要算子,这两种算子各有优缺点。
3.
In this paper, we make use of a new weighted moduli of smoothness w2(?)λ (f, t)w to give a pointwise estimate of weighted simultaneous approximation by Bernstein operator with Jacobi weight.
本文给出了Bernstein算子加权同时逼近的点态估计,在此使用的是Jacobi权函数ω(x)=x~a(1-x)~b(0≤a,b<1,a,b不全为零),引入新的加权光滑模ω_(■λ)~2(f,t)_ω,是对以前结果的补充和完善。
3) Bernstein-Sikkema Operators
Bernstein-Sikkema算子
1.
Lipschitz Property of Bivariate Bernstein-Sikkema Operators;
定义了正方形和单纯形上的二元Bernstein-Sikkema算子,研究了其一个重要的性质:函数与算子属于同一个Lipschitz类,其结果包含了文献《正方形上的Lipschitz连续函数的Bernstein多项式的常数Lipschitz》中的结果。
4) Durrmeyer-Bernstein operators
Durrmeyer-Bernstein算子
5) Bernstein-Durrmeyer operators
Bernstein-Durrmeyer算子
1.
Equivalence characterization for derivatives of Bernstein-Durrmeyer operators;
Bernstein-Durrmeyer算子导数的等价刻划
2.
As an application, the relationship between the multivariate Bernstein-Durrmeyer operators defined on the simplex and the modulus is discussed as well.
作为应用,讨论定义在单纯形上多元Bernstein-Durrmeyer算子与多元加权光滑模之间的关系。
3.
Secondly, a modification of Bernstein-Durrmeyer operators are introduced and the related approximation properties are also studied.
本文首先研究了一类修正的Bernstein算子的点态逼近性质,其次对Bernstein-Durrmeyer算子进行了修正,并研究了它的逼近性质。
6) Bernstein-Kantorovich operators
Bernstein-Kantorovich算子
1.
Weighted approximation of Bernstein-Kantorovich operators in B_α spaces;
Bernstein-Kantorovich算子在B_α空间的加权逼近
2.
In this paper we give the pointwise inequation for the derivatives of Bernstein-Kantorovich operators.
给出了Bernstein-Kantorovich算子高阶导数的点态不等式。
3.
Use the r-th classic modulus of smoothness ωr(f,t) to study the relation of the derivatives between Bernstein-Kantorovich operators and the smoothness of the function it approximates,and obtain the equivalent theorem between the derivatives of Bernstein-Kantorovich operators and the r-th classic modulus of smoothness ωr(f,t).
借助于r-阶古典光滑模ωr(f,t),研究了Bernstein-Kantorovich算子导数与它所逼近函数光滑性之间的关系,得到了Bernstein-Kantorovich算子导数与r-阶古典光滑模ωr(f,t)的等价定理。
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条