1) Bernstein-Kantorovich-Bézier operator
Bernstein-Kantorovich-Bézier算子
2) Bernstein-Kantorovich operators
Bernstein-Kantorovich算子
1.
Weighted approximation of Bernstein-Kantorovich operators in B_α spaces;
Bernstein-Kantorovich算子在B_α空间的加权逼近
2.
In this paper we give the pointwise inequation for the derivatives of Bernstein-Kantorovich operators.
给出了Bernstein-Kantorovich算子高阶导数的点态不等式。
3.
Use the r-th classic modulus of smoothness ωr(f,t) to study the relation of the derivatives between Bernstein-Kantorovich operators and the smoothness of the function it approximates,and obtain the equivalent theorem between the derivatives of Bernstein-Kantorovich operators and the r-th classic modulus of smoothness ωr(f,t).
借助于r-阶古典光滑模ωr(f,t),研究了Bernstein-Kantorovich算子导数与它所逼近函数光滑性之间的关系,得到了Bernstein-Kantorovich算子导数与r-阶古典光滑模ωr(f,t)的等价定理。
3) Bernstein-Kantorovich operator
Bernstein-Kantorovich算子
1.
The aim is to study some approximate properties by a kind of generalized Bernstein-Kantorovich operators Ln(f,sn,x) defined in Lp(1≤p<+∞).
主要研究定义在Lp[0,1](1≤p<+∞)上的一类推广的Bernstein-Kantorovich算子Ln(f,sn,x)的逼近性质。
2.
In this paper, by modulus of smoothness and qualities of polynomial of best approximation, we discuss the approximation qualities by the iterated Boolean sums of Bernstein-Kantorovich operators,for functions which are defined in the space L_p[0,1].
本文利用光滑模及最佳逼近多项式的性质,研究了Bernstein-Kantorovich算子的迭代布尔和对Lp[0,1]中的函数的逼近性质,得到了逼近正定理,弱逆不等式及等价定理。
3.
Using moduli of smoothness,the equivalent theorems on approximation by the iterated Boolean sums rKn of Bernstein-Kantorovich operators Kn for functions which are defined in the space L∞ are studied.
利用光滑模讨论了Bernstein-Kantorovich算子的迭代布尔和rKn对L∞[0,1]中函数逼近的等价定理。
4) Bernstein-Bézier operator
Bernstein-Bézier算子
1.
Estimate on Approximational Properties of Bernstein-Bézier Operator;
Bernstein-Bézier算子的点态逼近阶的估计
5) Bernstein-Bezier-Kantorovich operators
Bernstein-Bezier-Kantorovich算子
1.
The rate of approximation of Bernstein-Bezier-Kantorovich operators L~((α))_n for bounded functions is studied and an estimate formula on the rate of convergence of this type approximation is given.
文章研究了Bernstein-Bezier-Kantorovich算子列关于一般有界函数的逼近阶估计,得到一个其收敛阶的精确估计公式。
6) Szász-Kantorovich-Bézier operator
Szász-Kantorovich-Bézier算子
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条