1) fixed point theorem for increasing operators
增算子不动点定理
1.
This paper investigates the existence of maximal and minimal solution of the periodic boundary problem for nonlinear second order ordinary differential equation with discontinuous terms in Banach spaces, by using upper and lower solution and fixed point theorem for increasing operators.
在Banach空间中利用上下解方法与增算子不动点定理,研究了含间断项的二阶非线性常微分方程周期边值问题的最大解、最小解的存在性,推广和改进了现有的结果。
2) Fixed point for increasing operators
增算子不动点
3) increasing operator and fixed point
增算子及不动点
4) fixed point theorem of the sum of concove operators and conves operators
α凹算子与β凸算子之和的多重不动点定理
1.
Based on the fixed point theorem of the sum of concove operators and conves operators,sufficient conditions is de-rived for the existence of multiple positive periodic solutions of delay difference equations.
本文利用α凹算子与β凸算子之和的多重不动点定理给出一阶时滞差分方程多重周期解存在性的充分条件。
5) fixed point combinators
不动点算子
1.
There are fixed point combinators in λ-Calculus expressing the recursive nature in Recursive function.
λ-演算中的不动点算子,增强了系统的表达能力,表达了递归函数中递归的性质,但同时也略有不足,因为常见不动点算子,都没有β-范式。
6) fixed-point theorem
不动点定理
1.
By using fixed-point theorem in cones and fixed-point index theory,a class of discrete P-Laplacian boundary value problem was discussed and a sufficient condition of existence of one or two positive solutions was obtained.
利用锥上的不动点定理及不动点指标理论对一类离散P-Laplacian边值问题正解的存在性进行了讨论,得到了该问题存在一个及两个正解的充分条件。
2.
This paper presents an algorithm based on fixed-point theorem and Quine.
论文提出了一种基于不动点定理和Quine的建立自修复式程序的算法。
3.
By means of Darbo s fixed-point theorem,an existence result of solution for two-point boundary value problem of nonlinear fractional differential equation is obtained.
讨论了非线性分数阶微分方程的两点边值问题,其中的导数是Caputo型分数阶导数,非线性项是Carathéodory函数,应用Darbo不动点定理,证明其在L(0,1)中存在解。
补充资料:Borel不动点定理
Borel不动点定理
Borel fixed - point theorem
B吮l不动点定理{B.限l五xe小州nt价e僻m二匆卿,T侧邓吧,f.01”聊叉B“狱班滋n卜.王j 设F为代数闭域kl二非空完全代数簇,正则地作用于犷上的连通可解代数群G(见变换的代数群扭1罗-braic goup of transformat一ons))在卜中有不动点.由这个定理可以推出代数群的B.耽l子群(Borel sub-grouP)是共扼的(Bore卜MOI洲)叉)B定理(Borel一Moro-zov theorem)),不动点定理是A.Borel([lj)证明的.Borel定理可以推广到任意域k(不一定代数封闭卜设F为在域k上定义的完全簇若连通可解k分裂群(人一sPlit grouP)G正则地作用在F上,则有理人点集V(k)或者为空集,或者它包含G的一个不动点.因此推广的Bore]子群共扼性定理是:若域k是完满的,则一个连通人定义的代数群H的极大连通可解北可裂子群,在H的k点构成的群中元素作用下互相共辘(f21),
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条