1) one-dimensional harmonic oscillator
一维谐振子
1.
The deductive method for the operator theory of the uncertainty relation of one-dimensional harmonic oscillator;
一维谐振子不确定关系的算符理论推导法
2.
The method of using node theorem to solve the one-dimensional harmonic oscillator with a deta potential was presented and the reliable accurate eigenenergies and eigen- wave functions were given.
探讨了用节点法求解存在势时的一维谐振子势,并给出精确可靠的能级及本征波函数。
3.
This paper also pointed out that the lower limit of one-dimensional harmonic oscillator s ΔpΔx is exactly the lower limit of /2 which given by the general form of the uncertain relation,however the lower limi.
推出了一维谐振子的位置不确定范围、动量几率幅和动量几率密度的递推公式、动量不确定范围和等式型动量 -位置不确定关系 。
2) one dimension harmonic oscillator model
一维谐振子模型
1.
Calculated three order nonlinear polarzability of C_(60) molecule using classical one dimension harmonic oscillator model and agreed with experimen
用经典的一维谐振子模型计算了C_(60)分子的三阶非线性极化率,与实验结果比较,符合的很好。
3) one-dimensional linear harmonic oscillator
一维线性谐振子
1.
Taking the one-dimensional linear harmonic oscillator as an example,the time-dependence of the distribution of the probability density and probability flux have been calculated for the non-stationary case.
以一维线性谐振子为例,对非定态情况通过数值计算给出了不同时间的几率密度和几率流密度分布,并且讨论了几率密度和几率流密度随时间变化的基本特征。
4) one-dimensional damped-amplified harmonic oscillators
一维减幅-增幅谐振子
1.
The study of symmetries and conserved quantities for one-dimensional damped-amplified harmonic oscillators;
一维减幅-增幅谐振子的守恒量与对称性
5) one dmention forced harmonic oscillator
一维受迫线性谐振子
6) One-dimensional cavity
一维谐振腔
补充资料:谐振子
谐振子
oscillator, harmonic
[补注1 [A正1 Arnol‘d,V 1.,Mathe皿t:cal卿th。〔15 of classlcal rnCch翻cs,Spnnger,1978(译自俄文). 【AZ 1 Seh湃L .1.,Quantum毗chanies,McGraw一Hill, 1949、杜小杨译谐振子〔蝴锐场叙丫,har~;oe““朋:rop,r叩Mo““-”ec心“1 一个单自由度系统,其振动由方程 无+田Zx二0来描述.相轨道是圆,振动的周期T=2兀/o,与振幅无关.谐振子的位能依赖于x的平方: 。2叉2 U之立竺‘竺-, 一, 谐振子的一些例子是:摆的微小振动,固定在刚性不变的弹簧上的质点的振动,最简单的电子振荡电路.“谐振子”和“线性振子”常常作为同义词使用. 量子力学线性振子的振动由阳诚戏吃er方程(Sellr6dinger eq娜戒lon) h,d,沙」「_m。,Zx,1。 一三二一二六答口十}E一二兴井一.{少“O 2小dx‘L一2」了来描述.其中m是质点的质量,E是它的能量,h是Planck常数,。是频率.量子力学线性振子具有能级离散谱:E。=(n+l/2)h。,n=0,1,2,…;相应的本征函数可以由Her而te函数(Her而te fimction)来表示. “振子”这一术语适用于其运动带有振动特性的具有有限个自由度的(力学或物理)系统(例如,vdn derPol振子—表示处于位势为坐标的正定二次型的位势力场中的质点的振动的多维线性振子,见van妞Fbl方程(van der Pol equation)).对于“振子”甚至“线性振子”,显然都没有唯一的解释.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条