1) one resonance oscillation
一维谐振动
1.
Using potential energy curve,one resonance oscillation with concise,simple and rememberable characteristics is discussed.
用势能曲线讨论一维谐振动,具有简明、生动、易记等特点,可在教学中介绍给学生。
2) one-dimensional harmonic oscillator
一维谐振子
1.
The deductive method for the operator theory of the uncertainty relation of one-dimensional harmonic oscillator;
一维谐振子不确定关系的算符理论推导法
2.
The method of using node theorem to solve the one-dimensional harmonic oscillator with a deta potential was presented and the reliable accurate eigenenergies and eigen- wave functions were given.
探讨了用节点法求解存在势时的一维谐振子势,并给出精确可靠的能级及本征波函数。
3.
This paper also pointed out that the lower limit of one-dimensional harmonic oscillator s ΔpΔx is exactly the lower limit of /2 which given by the general form of the uncertain relation,however the lower limi.
推出了一维谐振子的位置不确定范围、动量几率幅和动量几率密度的递推公式、动量不确定范围和等式型动量 -位置不确定关系 。
3) One-dimensional cavity
一维谐振腔
5) one dimension harmonic oscillator model
一维谐振子模型
1.
Calculated three order nonlinear polarzability of C_(60) molecule using classical one dimension harmonic oscillator model and agreed with experimen
用经典的一维谐振子模型计算了C_(60)分子的三阶非线性极化率,与实验结果比较,符合的很好。
6) one-dimensional linear harmonic oscillator
一维线性谐振子
1.
Taking the one-dimensional linear harmonic oscillator as an example,the time-dependence of the distribution of the probability density and probability flux have been calculated for the non-stationary case.
以一维线性谐振子为例,对非定态情况通过数值计算给出了不同时间的几率密度和几率流密度分布,并且讨论了几率密度和几率流密度随时间变化的基本特征。
补充资料:简谐振动(harmonicvibration)
【简谐振动】(harmonicvibration)振动的一种形式。一个作直线振动的质点,如果取其平衡位置为原点,取其运动轨道沿`x`轴,那么当质点离开平衡位置的位移`x`随时间`t`变化的规律,遵从余弦函数或正弦函数时:`x=Acos((2\pi)/Tt \phi)`,这一直线振动便是简谐振动。式中`A`表示质点离开平衡位置时`(x=0)`的最大位移绝对值,称“振辐”,`T`是简谐振动的周期,`((2\pi)/Tt \phi)`角称为简谐振动
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条