1) Laplace field equation
Laplace场方程
2) Young-Laplace equation
Young-Laplace方程
3) Laplace equation
Laplace方程
1.
Several solutions of laplace equations and their application to the study of seepage failure;
Laplace方程若干问题的解及其在渗透破坏中的应用
2.
Alternating iteration method for solving the Laplace equation;
求解Laplace方程的交替迭代法
3.
The existence for the solution of the Laplace equation with an exponential Neumann boundary condition;
带指数增长型Neumann边界条件的Laplace方程解的存在性
4) p-Laplacian equation
P-Laplace方程
1.
In this paper we consider the global existence of the solutions of the p-Laplacian equations with particular coefficient.
利用Hardy不等式及Soblev嵌入定理讨论了具特殊系数的P-Laplace方程解的整体存在性,得到对初值u_0∈W~(1,p)(Ω)当λ<λ_(N,p),对任意的1
λ_(N,p),1
2.
In this paper we consider the Cauchy problem of the p-Laplacian equations with absorption.
本文讨论了带吸收项的P-Laplace方程解当p→∞时的渐近性质。
3.
This paper deals with the existence of a solution for a fourth-order p-Laplacian equation boundary value problem: ,and the different case for the degree of power with respect to the variables x and y of f(t,x,y).
研究一类四阶p-Laplace方程的边值问题:。
5) p-Laplace equation
p-Laplace方程
1.
Existence of solutions for p-Laplace equations subject to the boundary value problem;
p-Laplace方程边值问题解的存在性
2.
In this paper,the existence of solutions is considered for one dimensional p-Laplace equation(φ_p(u′(t)))′= f(t,u(t),u′(t)),t∈(0,1)subject to Neumann boundary con- dition.
主要讨论一维p-Laplace方程(φ_p(u′(t)))′=f(t,u(t),u′(t)),t∈(0,1)在Neumann边值条件u′(0)=0,u′(1)=0下,对应的边值问题解的存在性。
3.
The authors discuss the existence of positive solution for a p-Laplace equation with singular weight by using Sobolev-Hardy inequality and the Mountain Pass Lemma.
利用Sobolev-Hardy不等式和山路引理,讨论了一类包含奇性权p-Laplace方程在具有光滑边界开集上正解的存在性。
6) p-Laplace
p-Laplace方程
1.
Existence of solutions for the p-Laplace equation subject to the three-point boundary value problem;
p-Laplace方程的三点边值问题解的存在性
2.
The Existence of Solutions for p-Laplace Equations Subject to Neumann Boundary Value Problem;
p-Laplace方程Neumann边值问题的可解性
补充资料:Laplace-Beltrami方程
Laplace-Beltrami方程
Laplace - Beta-ami equation
U内份一Bd七舰‘方程IU内Ce一B曲加功11呷.五阅;Jlau-~一Ee压,脚””皿。e。。el,%26hiallll方程(玫址和ml叫明石on) 平面上函数u的Uphce方程在任意二维C“耽·~流形R上的推广.当曲面R有局部坐标古,叮及第一基本形式伍压t丘mda此ntal form) ds’=侧七’+2尸d亡d叮+Gd叮’时,Up阮e一玫抢扭拍方程形如。「“会一G鲁: △u三,二万~l一一裸--一二乒工一l十 -一此L护瓦厂弃」’ 。「尸器一:器1 +一卜一=决==~=若』.一l二0.(*) 刁叮L抓丽二了泛」当五二G,F=0时,即(亡,叮)为R上之等温坐标(isoUler-皿dcoo记illat图)时,方程(*)就变成了肠place方程.Uphce一玫1加创方程是E.氏】加面在18醉一1865引人的(见【l」). (*)式左方再除以护反不了则称为第二氏七叮‘微分参数(secondBe】tIa而d迁比renhal PamIT记ter). Uphce一Beltr田而方程的正则解。是调和函数的推广,常称为曲面R上的调和函数伪anl习nic ftme石011).这些解和通常的调和函数一样的物理解释,例如作为曲面R上的不可压缩流体流的速度势,或作为R上的静电场的势等等.曲面上的调和函数保留了通常调和函数的许多性质.肠对c抽以原理(D政hletP们山IciP】e)的推广对它们也适用:在区域GcR上的c’(G)门c(百)类函数且在边界口G上与调和函数v6c(百)之值相同的函数中,v使以下的D硫11】et积分(D旅hletin钾gml) 。(,)一了丁v,·了厄云二丁万过;己。 G达到最小值,这里 _/。v\,__日,。,_厂。,\2 El名牛l一ZF福今沃二一十GI探弓一1 “、口。j“日去日”‘U\日占J V。=— EG一F‘是第一氏脸lmi微分参数伪巧tBe际叮面山玉此爪ialparan坦ter),它是梯度平方脚dZu对曲面上的函数的推广. 关于Laphce一Be1加而方程对高维Riemann流形的推广,见h咖Ce算子(Upbce operator)·
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条