说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> p(x)-Laplace方程组
1)  p(x)-Laplacian system
p(x)-Laplace方程组
2)  p(x)-Laplace equation
p(x)-Laplace方程
3)  p-Laplace systems
p-Laplace方程组
1.
Existence of positive solutions to boundary value problems for a class of one-dimensional singular p-Laplace systems
一类一维奇异p-Laplace方程组边值问题正解的存在性
4)  p-Laplacian equation
P-Laplace方程
1.
In this paper we consider the global existence of the solutions of the p-Laplacian equations with particular coefficient.
利用Hardy不等式及Soblev嵌入定理讨论了具特殊系数的P-Laplace方程解的整体存在性,得到对初值u_0∈W~(1,p)(Ω)当λ<λ_(N,p),对任意的1λ_(N,p),1
2.
In this paper we consider the Cauchy problem of the p-Laplacian equations with absorption.
本文讨论了带吸收项的P-Laplace方程解当p→∞时的渐近性质。
3.
This paper deals with the existence of a solution for a fourth-order p-Laplacian equation boundary value problem: ,and the different case for the degree of power with respect to the variables x and y of f(t,x,y).
研究一类四阶p-Laplace方程的边值问题:。
5)  p-Laplace equation
p-Laplace方程
1.
Existence of solutions for p-Laplace equations subject to the boundary value problem;
p-Laplace方程边值问题解的存在性
2.
In this paper,the existence of solutions is considered for one dimensional p-Laplace equation(φ_p(u′(t)))′= f(t,u(t),u′(t)),t∈(0,1)subject to Neumann boundary con- dition.
主要讨论一维p-Laplace方程(φ_p(u′(t)))′=f(t,u(t),u′(t)),t∈(0,1)在Neumann边值条件u′(0)=0,u′(1)=0下,对应的边值问题解的存在性。
3.
The authors discuss the existence of positive solution for a p-Laplace equation with singular weight by using Sobolev-Hardy inequality and the Mountain Pass Lemma.
利用Sobolev-Hardy不等式和山路引理,讨论了一类包含奇性权p-Laplace方程在具有光滑边界开集上正解的存在性。
6)  p-Laplace
p-Laplace方程
1.
Existence of solutions for the p-Laplace equation subject to the three-point boundary value problem;
p-Laplace方程的三点边值问题解的存在性
2.
The Existence of Solutions for p-Laplace Equations Subject to Neumann Boundary Value Problem;
p-Laplace方程Neumann边值问题的可解性
补充资料:拟线性双曲型方程和方程组


拟线性双曲型方程和方程组
quasi-linear hyperbolic equations and systems

尸二。*(“,卢),g=u,(“,刀)的六个一阶方程,其中之一是由所有其他的导出的,可以考虑这个具有五个未知函数的五个拟线性方程的组.对类似的方程组,因此对拟线性方程,成立Q成勿问题解的存在性和唯一性定理.这个方法,无需作任何重大的改变,可以应用于二阶拟线性组 a。二,+b。女,+eu堆。+韶二0,j=l,‘·,k,其中系数依赖于x,t和诸函数叼【补注】有关应用,见仁A2]一汇A3].拟线性双曲型方程和方程组【q退函七翔口hy碑比叱e闰四d.”.川另喊曰璐;~If皿.e益”砒咖eP加皿,ee翩e郑姗尹H.,“c邢cWM曰] 形如 乙「ul二又a‘D,u二f(l、 】口】‘爪的微分方程和微分方程组,方程组(l)是对具有分量。,(x),…,。*(x)(在单个方程情形下,丸二l)的矢量值函数u(x)来求解的.系数矿是矩阵,它的元依赖于空间自变量x=(x。,二,x。)和矢量值函数u,以及它的直到嫩一1阶在内的偏导数.右端项f亦依赖于这些变量.如果矿是和u的分量个数有相同阶的方阵,那么称(1)是确定方程组(de沈rn应贺d哪t曰m).特征形式(chara叱ristic form) e‘古’一。‘“。,”‘,“·,一det…1.:落。二;·……是由L的丰邵(p血cip司part)艺{二{一‘少所决定的.这里D“=沙!/刁瑞。…日袱·,而扩=鱿,.‘’C“· 方程组(1)的双曲性是由算子L的下列表征所定义的.对于x,u及其直到川一1阶在内的导数的每一组值,存在一个矢量心‘R”+’,使得对任一不平行于心的叮〔R”+’,特征方程(cllaraCteristic叫Uation) Q(又心+粉)二0(2)有mk个实根又(每个根有多少重就算多少次). 通过某点尸‘R”十’且垂直于矢量省的面元称为空向的(印ace】正e),垂直于空向面的方向称作时向的(石力℃」正e), 一曲线,在它每个点上都有时向的切线,称作时向曲线(ljme.】ike~). Ca.dly问题(Ouchy Problem)在拟线性双曲型方程和方程组的所有问题中占有中心位置,它是在下列条件下求方程组(l)的解u的问题:在由方程 职(x)“0,!D,卜}gad甲1尹0所定义的某个光滑的n维超曲面n上,已给函数u以及它的(沿某个不切于n的方向的)直到爪一l阶(在内)的偏导数的值.如果总可以求得这样的解,那么n称作是关于L的自由超曲面(6优b)咪r-surfa此). 如果(1)的系数和给在解析自由超曲面n上的Q叻y条件都是解析的,那么在n的一个邻域中的解析解是唯一的;如果Q公勿条件还包含有n上所有直到。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条