2) p(x)-Laplacian system
p(x)-Laplace方程组
3) p-Laplacian equation
P-Laplace方程
1.
In this paper we consider the global existence of the solutions of the p-Laplacian equations with particular coefficient.
利用Hardy不等式及Soblev嵌入定理讨论了具特殊系数的P-Laplace方程解的整体存在性,得到对初值u_0∈W~(1,p)(Ω)当λ<λ_(N,p),对任意的1
λ_(N,p),1
2.
In this paper we consider the Cauchy problem of the p-Laplacian equations with absorption.
本文讨论了带吸收项的P-Laplace方程解当p→∞时的渐近性质。
3.
This paper deals with the existence of a solution for a fourth-order p-Laplacian equation boundary value problem: ,and the different case for the degree of power with respect to the variables x and y of f(t,x,y).
研究一类四阶p-Laplace方程的边值问题:。
4) p-Laplace equation
p-Laplace方程
1.
Existence of solutions for p-Laplace equations subject to the boundary value problem;
p-Laplace方程边值问题解的存在性
2.
In this paper,the existence of solutions is considered for one dimensional p-Laplace equation(φ_p(u′(t)))′= f(t,u(t),u′(t)),t∈(0,1)subject to Neumann boundary con- dition.
主要讨论一维p-Laplace方程(φ_p(u′(t)))′=f(t,u(t),u′(t)),t∈(0,1)在Neumann边值条件u′(0)=0,u′(1)=0下,对应的边值问题解的存在性。
3.
The authors discuss the existence of positive solution for a p-Laplace equation with singular weight by using Sobolev-Hardy inequality and the Mountain Pass Lemma.
利用Sobolev-Hardy不等式和山路引理,讨论了一类包含奇性权p-Laplace方程在具有光滑边界开集上正解的存在性。
5) p-Laplace
p-Laplace方程
1.
Existence of solutions for the p-Laplace equation subject to the three-point boundary value problem;
p-Laplace方程的三点边值问题解的存在性
2.
The Existence of Solutions for p-Laplace Equations Subject to Neumann Boundary Value Problem;
p-Laplace方程Neumann边值问题的可解性
6) p-Laplace equations
p-Laplace方程
1.
The present paper deals with the numerical computation method for a class of p-Laplace equations with multi-point boundary value conditions which are widely applied to many fields (Φ_p(u′))′+f(t,u)=0,t∈(0,1),u′(0)=sum 1 to (m-2)(b_iu′(ξ_i)),u(1)=sum 1 to (m-2)(a_iu(ξ_i)).
研究如下一类p-Laplace方程多点边值问题的数值计算方法(Φ_p(u′))′+f(t,u)=0,t∈(0,1),u′(0)=sum from 1 to (m-2)(b_iu′(ξ_i)),u(1)=sum from 1 to (m-2)(a_iu(ξ_i))。
补充资料:Laplace方程
Laplace方程
Laplace equation
U内沈方程【b户此仰颐.;J加I理a冲~服e] 如下形式的齐次偏微分方程 ‘._护“._.扩u_八 △“兰资=于+…+一签共一=0.(l、 一日x幸日x二其中u=二(x)=u(x.,…,x。)是n个实变元的函数.肠p场沈方程的左边称为作用于“的U内理算子(助place。拌份幻r).在E议土d空间R”(n)2)的某个区域D里,助pla戊方程的c,类正则解,即在D里有直到二阶的连续偏导数的解,称为D里的调和函数(加叮的川c允圈浏on).助plaCe方程是二阶椭圆型偏微分方程的主要代表,对解椭圆方程的边值问题,其基本方法已经和仍在发展(见椭圆方程边值问题(加助-由卿明习佣problem,eiliP石c闪叩t10ns)). 令v是D里一个位势向量场(poten往al袋以or反记),即v=一脚du,其中u二u(xl,…,x。)是位势.因为 △“=div脚d“=一divv,加phce方程的物理意义是,任意这种场的位势在没有源泉的区域D里满足肠ph戊方程,例如,万有引力场的引力位势在没有吸引质量的区域里,静电场的位势在没有电荷的区域里,等等,都满足LaP场羌方程.这样,加plaCe方程表示位势场的守恒定律.从这个观点看,助plaCe方程的形式(l)是选取D匕Cad岛直角坐标系得到的;在其他坐标系,肠p】aCe算子和肠p-laCe方程取不同形式.在这个场存在源泉的地方,(l)的右边是一个同源泉的密度成比例的函数,而U PlaCe方程变成P成,阴I方程(PoisS0neq谬tion).肠ph沈方程也出现在许多其他的,研究稳定场的数学物理间题中,例如稳定温度分布的研究,静弹性理论的问题,等等. 对Up场Ce方程,下述位势论的边值问题是主要的:l)D苗由峨问题(D试chletprobleln),或者第一边值问题(fnst饰朋da斗喇ue prob】。n),即寻求一个调和函数,使得它取给定在区域的边界刁D上的连续值;2)N期抽1.问题(Ne切mannprobhtn),或者第二边值问题(s助nd boUn山叮词碳Problem),寻求一个调和函数u,使得它的法向导数刁“/日n取给定在日D上的连续值;3)混合问题(m血曰pmb如n),寻求一个调和函数“使得在边界上满足线性关系 ‘,.、日“(y)_,.、,.、__,.、 “(y)二亏丫二+召(y)u(y)=g(y), ‘、2产刁n尸“J产一、J产口、J户’ y‘刁D,“(y)笋0. 在n=2的情况下,助pla优方程与单个复变元:=x,十ix:的解析函数论有紧密联系,事实上,解析函数的实部与虚部是共辘调和函数(co句川笋记卜汀.加nic func石。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条