1) interpolating matrix method
插值矩阵法
1.
This paper constructs the fundamental theory of interpolating matrix method for solving mixed order systems of linear multipoint boundary value problems of ODEs.
本文构造了插值矩阵法求解线性混合阶常微分方程组多点边值问题的基本理论,并制作了该法的ODE求解器IVMODE,演示了数值实验。
2.
This paper applies an ordinary differential equation (ODE) solver of interpolating matrix method to calculate large deflection of thin circular plate with varible thickness.
文章用插值矩阵法的常微分方程求解器求解变厚度圆薄板大挠度弯曲问题,提出了对一般方程正则奇点的处理途径。
3.
In this paper, the governing differential equations of buckling and free -vibration of the thin rectangular plates with variable thickness are transformed to the eigenvalue problems of ordinary differential equations with one Fourier series,and therefore are solved by an ODE solver-interpolating matrix method.
本文用单三角级数把单向变厚度矩形板的屈曲和自由振动控制方程化为常微分方程特征值问题,转而采用CDE求解器──插值矩阵法获解。
3) [Z] matrix interpolati?
[Z]矩阵插值
4) matrix valued rational interpolation
矩阵值有理插值
1.
The matrix valued rational interpolation is very useful in the partial realization problem and model reduction for all the linear system theory.
矩阵值有理插值在部分实现问题和系统线性理论的模型简化问题中起重要的作用 ,顾传青给出了矩阵值有理插值的Lagrange基形式 。
5) impedance matrix interpolation
阻抗矩阵插值
1.
Fast frequency sweep technology using impedance matrix interpolation based on hybrid MoM-UTD method;
基于MoM-UTD混合方法的阻抗矩阵插值快速扫频技术
6) matrix linear interpolation
矩阵线性插值
1.
A modified method, the matrix linear interpolation adaptation method, is proposed in this paper to overcome the memory limitation.
为克服这一缺点 ,该文提出一种改进方法——矩阵线性插值自适应算法。
2.
Then,two concrete algorithms named mean linear interpolation and matrix linear interpolation respectively are given.
接着介绍了此插值框架下的两种具体自适应算法 :均值线性插值算法和矩阵线性插值算法。
补充资料:Бернштейи插值法
Бернштейи插值法
Bemshtein interpolation method
反p.un℃翻插值法fBemsh触in inte甲日侧门me价川;反 p幽Te肠“a““TepnoP妞颐“o皿碱npo”eeel 在区间!一1,}}七一致收敛于函数厂(劝的代数多 项式序列,f(x)农卜1,l]上是连续的.更确切地说, 反pHllll℃益H插值法指的是代数多项式序列 艺才犷’兀(‘, P。‘f.尤1.二一址卫一一一一一~一。_、。 一n、厂,了、,,—.八二}厂 1。气,笼矢一‘入I一文厂’少 其中 不(I)又eos(n arc eos义) 是q的~多项式(Cheb产he、pol扣om走a丈s夕, .、、一。。、}~鱼二垫.) }‘刀{是插值结点;而如果k尹21、,l是任意正整数,n之2匆十八g)l,0簇r<21,;二I,,,,q,则 河梦,二刀、梦’;否则 了}了一} 月开二艺f(x步八、)、:,)一艺f(x界、,}十:,) 了扮尹二{多项式凡仃;x)的次数与使得凡(f;x)等于f(x)的那些点的个数之比是(n一l)/伪一的,当。*刀时,它趋向于21/(2卜1);如果声足够大,则这个极限任意接近1.这种插值法是C.H一反llmrl℃nH于一1男】年提出的(l1)).【补注】这种插值法在西方似乎不很熟悉但是,有一种对于[(),1】上的有界函数采用特殊的插值结点k/城火=O,…,司的众所周知的Be此htein法卜这种方法是通过丘脚阻rd抽多项式(Bernshtein polynomia{s)给出的,对于[0,l]上的有界函数f(x)构造的Eep皿卫祀‘l多项式序列氏仃;劝在了称)的每个连续点x针0、1J上收敛于少试义).如果f(x)在【o,11仁是连续的,则这个序列在!0,1}一匕一致收敛(王八x)).如果八沐)是可微的,则仔贬八义)的每个连续点上)B二(f;劝,f’林),见[AI] 这种段阳山1℃兔I法常常用来证明(关于逼近的)Wei仍抚昭s定理(Weierstrass theorem).关于这种方法的推广(单调算子定理(monotoneoperator theorem))见【A21,第3章,第3节,也可参阅函数通近线性方法(approxitnation of functions,linear methods).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条