1) Matrix interpolation
矩形插值
2) interpolating matrix method
插值矩阵法
1.
This paper constructs the fundamental theory of interpolating matrix method for solving mixed order systems of linear multipoint boundary value problems of ODEs.
本文构造了插值矩阵法求解线性混合阶常微分方程组多点边值问题的基本理论,并制作了该法的ODE求解器IVMODE,演示了数值实验。
2.
This paper applies an ordinary differential equation (ODE) solver of interpolating matrix method to calculate large deflection of thin circular plate with varible thickness.
文章用插值矩阵法的常微分方程求解器求解变厚度圆薄板大挠度弯曲问题,提出了对一般方程正则奇点的处理途径。
3.
In this paper, the governing differential equations of buckling and free -vibration of the thin rectangular plates with variable thickness are transformed to the eigenvalue problems of ordinary differential equations with one Fourier series,and therefore are solved by an ODE solver-interpolating matrix method.
本文用单三角级数把单向变厚度矩形板的屈曲和自由振动控制方程化为常微分方程特征值问题,转而采用CDE求解器──插值矩阵法获解。
3) [Z] matrix interpolati?
[Z]矩阵插值
4) Fractal interpolation
分形插值
1.
Generating algorithm of 3D submarine digital cartograph based upon fractal interpolation;
基于分形插值的三维海底地图生成算法
2.
Application of support vector machines function regression in fractal interpolation;
支持向量机函数拟合在分形插值中的应用
3.
A 3-D fractal interpolation algorithm based on iterated function system;
基于函数迭代系统的3-D分形插值算法
5) shape-based interpolation
形状插值
6) shape preserving interpolation
保形插值
1.
This paper gives a rational function of shape preserving interpolation and algorithm with special nature, and convergence order of shape preserving interpolation are proved.
给出一种具有特殊性质的有理保形插值函数及其求解算法 ,讨论了它的收敛阶 ,这对有关问题无论是理论研究 ,还是实际应用都具有一定的意
2.
The presented method can improve effectively the precision of arc-length parameterization to meet the requirements of shape preserving interpolation.
所给出的方法既能有效地提高近似弧长参数化精度 ,同时又满足了保形插值的要求 。
补充资料:Bessel插值公式
Bessel插值公式
Bessel interpolation formula
十户,业匕生二匕二上业业二且+ ’7’/“(2陀)! 十户划卫二业三卫上塑二止逛卫业二业且, ‘J’/之(Zn+l)!与Gauss公式(l),(2)相比,Bessel插值公式具有某些优点;特别是,如果在区间的中点,即在点t=1/2上插值,则一切奇数阶差分的系数都等于零.如果把公式(3)右边最后一项略去,则所得到的多项式凡,十1(x0十th)虽然不是一个适当的插值多项式(它仅在Zn个结点xo一伍一 l)h,…,x。十从上等于f(x》,但是给出了比同次插值多项式更好的余项估计(见播值公式(interpolatlon扔皿ula)).例如,如果x二x0十th6(x。,xl),则使用关于结点x0一h,x。,x。十h,x。+Zh写出的最常用的多项式 。;‘x‘、+,、、_一、:,,、。,,},一工{、尸,,,业止卫. 一扒‘。’‘”‘一”/2’了’/’UZ}’了’‘’几得到的余项估计,比关于结点x。一h,x。,x。,h或x。,x。+h,x。+2h写出的插值多项式给出的估计几乎要好8倍.Bessel插值公式{肠份哭1 intellx面位用肠nll山反二e”“ItI℃Pn创扭”“o“”即中叩M扒a} 作为Gauss前位]插值公式与同阶的(j:,us、后“,J括值公式(见‘;auss插值公式(Gauss Interp‘)xa[;、)11 folmtlla))之和的半而得到的公式,旋于结点卜,丫。}h.丫。h,I。·“h,丫川,.丫川,l)/7的Gaus、前向插值公式为:八一点工二戈+111卜 (,,十,帆叮h)州·川、、少不一(l) 刃+口(l、l)叮启) (2,:+1)’关f一结点丫。二戈汁h即关J结点玩,h一、、,、Zh一丫。卜h‘、从曰”!泊,、月h的同阶的Causs后向插值公式为‘·:、‘、r一、·,::、了{卜、业示过· ‘,今、、三性二i上二_上二_塑_业工__妇匕__“__土 /l/2飞,卜, “,‘一”(2) 设 (声扮石‘) 一厂冷二一下一一Bessel插值公式取下列形式([l},口1) BZ十:(一‘.“h)(3) 、一、/:{,一井片/少沪 ’/一{2}’一2’
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条