1) Matrix valued rational interpoktion
矩阵有理插值
2) matrix valued rational interpolation
矩阵值有理插值
1.
The matrix valued rational interpolation is very useful in the partial realization problem and model reduction for all the linear system theory.
矩阵值有理插值在部分实现问题和系统线性理论的模型简化问题中起重要的作用 ,顾传青给出了矩阵值有理插值的Lagrange基形式 。
3) interpolating matrix method
插值矩阵法
1.
This paper constructs the fundamental theory of interpolating matrix method for solving mixed order systems of linear multipoint boundary value problems of ODEs.
本文构造了插值矩阵法求解线性混合阶常微分方程组多点边值问题的基本理论,并制作了该法的ODE求解器IVMODE,演示了数值实验。
2.
This paper applies an ordinary differential equation (ODE) solver of interpolating matrix method to calculate large deflection of thin circular plate with varible thickness.
文章用插值矩阵法的常微分方程求解器求解变厚度圆薄板大挠度弯曲问题,提出了对一般方程正则奇点的处理途径。
3.
In this paper, the governing differential equations of buckling and free -vibration of the thin rectangular plates with variable thickness are transformed to the eigenvalue problems of ordinary differential equations with one Fourier series,and therefore are solved by an ODE solver-interpolating matrix method.
本文用单三角级数把单向变厚度矩形板的屈曲和自由振动控制方程化为常微分方程特征值问题,转而采用CDE求解器──插值矩阵法获解。
4) [Z] matrix interpolati?
[Z]矩阵插值
5) rational matrix
有理矩阵
1.
In this paper, we mainly discuss the problem of computing rational matrixexponential.
本文主要探讨了有理矩阵指数的计算问题,其最重要的成果是结合符号计算推出了一种计算有理矩阵指数的新方法,利用该方法可以给出有理矩阵指数的一类精确表达式,还可以利用Mathematica软件给出十万位以内任意精度的数值结果。
6) rational interpolation
有理插值
1.
On rational interpolation to |x| at the adjusted Newman nodes;
基于调整的Newman型结点组对|x|的有理插值逼近
2.
Application of exponential splines and rational interpolation to the pricing of zero-coupon bonds;
指数样条和有理插值在零息票债券定价中的应用
3.
By analysing to the given data of the rational interpolation,an important property is proven,which expresses the relation between degree of the rational interpolants and the given data.
通过对有理插值给定型值特点的分析,得到有理函数插值的一个重要性质:描述了有理插值函数的阶与给定型值的关系。
补充资料:单值矩阵
单值矩阵
monodromy matrix
单值鹭t黑嘿暮黔黑瀑巍常薇分方程又”A(t)x,t6R,x‘R”在零点处正规化的基本矩阵(和」、da此幻ta]袱亩认)X(亡)当:二。时的值;其中A(0是。周期矩阵,它在R的每一个紧区间上是可和的.刃一B kn“””~柳
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条