1) Faber polynomials
贝尔多项式
2) Boole polynomial
布尔多项式
1.
The n_ary Boole polynomial f(x_,…,x_n) can be denoted by the form off(x_1,…,x_n)=∑f(α_1,…,α_n)x~~~(α_1)_1…x~~~(α_n)_nLet F_n and_m is respectively the set of all n-ary Boole functions and all n_ary Boole polynomials on Boole algebra B,then F_n=_n iff |B|=2.
布尔代数B上的n元布尔多项式f(x1,…,xn)可以表为f(x1,…,xn)=∑f(α1,…,αn)x1α1…xnαn的形式。
3) Chebyshev polynomial
契贝雪夫多项式
1.
Application of curvature mode in damage detection of plate-like structure based on Chebyshev polynomial;
基于契贝雪夫多项式曲率模态在结构损伤检测中的应用
2.
Taking advantage of the good approxi- mation of the Chebyshev polynomial,we defined a Chebyshev polynomial function of the mode .
本文利用函数的契贝雪夫多项式的展开式具有很高的逼近特性,提出了板类结构动力检测的 曲率模态算法——契贝雪夫多项式算法,构造出了板类结构振型的契贝雪夫多项式函数。
4) Chebyshev polynomials
契贝谢夫多项式
1.
On relationship of Legendre polynomials and Chebyshev polynomials
关于勒让德多项式与契贝谢夫多项式间的关系
2.
The paper is based on the Fourier series and use the Chebyshev polynomials wonderfully,gives successfully the distribution and calculation of the sample generalized variance.
本文以傅氏级数为基础,巧妙地利用了契贝谢夫多项式,成功地给出了子样广义方差的分布函数及其计算过程。
3.
This paper that is based on the Fourier Series and applies the Chebyshev polynomials wonderfuly, gives the distribution function of a randowm variable utilizing its moments, In spite of this distribution function s form in thd series, its value can calculated easily with a computer.
现以傅氏级数为基础,运用契贝谢夫多项式,给出了用随机变量的矩求其分布函数的表达式。
5) Bernoulli polynomial
贝努利多项式
1.
Party sum of ζ function about modulus q was been researched, not only get a important asymptotic formula, but also derive Kubert identities for the Hurwitz zeta-function, Euler digamma function and Bernoulli polynomials.
主要研究了ζ函数关于模q剩余类部分和,不仅得出了一个重要的渐近公式,而且将Kubert恒等式推广到赫尔维茨ζ函数、欧拉双Γ函数和贝努利多项式上。
2.
Bernoulli polynomials have been studied extensively over the last two centuries.
贝努利数及贝努利多项式在许多领域,如数论、组合学、数量分析理论中有许多重要的应用,在过去的两个多世纪中数学家们对此进行了广泛而又深入的研究。
6) Chebyshev multinomial
契贝谢夫多项式
1.
Some identical equations of Chebyshev multinomial and the relationship with Fibonacci numbers;
契贝谢夫多项式的一些恒等式及其斐波纳奇数
2.
Aim To study the identities of the first and second Chebyshev multinomial.
目的研究第一类、第二类契贝谢夫多项式的一些恒等式。
3.
A group of interesting identical equations of cosine function is obtained through the application of properties of the famous chebyshev multinomial by using the primary methods.
采用初等方法并用著名的契贝谢夫多项式的有关性质得到了一组有趣的余弦函数的恒等
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。