1) n th order integrated semigroups
n阶积分半群
2) n-time integrated C-semigroup
n次积分C半群
1.
By means of the probabilistic estimation of convergence rate for C-semigroups and the properties of exponential bounded n-time integrated C-semigroups,some brief probabilistic approximations and convergent rates are obtained.
利用C半群收敛速度的概率型估计式,结合指数有界的n次积分C半群的性质,给出了n次积分C半群的概率型逼近式及收敛速度的估计式。
3) n-times integrated C-semigroups
n次积分C半群
1.
n-times integrated C-semigroups and abstract cauchy problem;
n次积分C半群与抽象柯西问题的强解
2.
In this paper, we obtain several properties of n-times integrated C-semigroups and their proofs.
引入了主算子为n次积分C半群生成元的线性非齐次抽象柯西问题强解的概念,讨论了相应抽象柯西问题存在强解的一些充分必要条件及强解的表示式。
3.
The Laplace inverse transformation for n-times integrated C-semigroups is discussed.
讨论了n次积分C半群的Laplace逆变换形式,并通过限制预解式得到了n次积分C半群的渐近展开式。
4) n-times integrated C-semigroups
n次积分C-半群
1.
The Approximation Theorems and Spectral Mapping Theorems for n-times Integrated C-semigroups;
n次积分C-半群的逼近定理和谱映照定理
2.
Convergence for exponentially bounded n-times integrated C-semigroups and approximation problem for a sequence of operators were discussed.
讨论了指数有界的n次积分C-半群的收敛性和算子列的逼近问题。
3.
In order to solve some abstract Cauchy problems,mathematicians created n-times integrated C-semigroups,then generalized n-times integrated semigroups and C-semigroups.
为了解决更多类型的抽象柯西问题,在半群理论中引入了n次积分C-半群,推广了n次积分半群和C-半群。
5) n-times integrated semigroup
n次积分半群
6) Bi-continuous n-times integrated C-semigroup
双连续n次积分C-半群
1.
Exponentially bounded bi-continuous n-times integrated C-semigroups and properties;
指数有界双连续n次积分C-半群及其性质
补充资料:分数阶积分与微分
分数阶积分与微分
og fractional integration and differentia-
分数阶积分的逆运算称为分数阶微分:若几介F,则f为F的:阶分数阶导数(na ctional deriVative).若0<戊
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条