1) Markov integrated semigroup
Markov积分半群
1.
By proving the approximation of the Markov integrated Q-semigroup,this paper aims to prove that the approximation of the Markov integrated semigroup on l∞ can be approximated by a family of uniformly convergent integrated semigroups.
通过证明Markov积分Q-半群的逼近证明了l∞上一个Markov积分半群G(t)可以由一族一致收敛的积分半群逼近。
2.
This paper introduces weak symmetry of Markov integrated semigroups.
介绍了Markov积分半群的弱对称性,对于一个单流出保守的Q-矩阵,给出了Markov积分Q-半群忠实且弱对称的充要条件。
2) Markov semigroup
Markov半群
1.
Moreover we prove that the semigroup is Markov semigroup and asymptotic stability.
运用算子半群理论讨论了一类多服务排队系统正解的存在唯一性,并证明了所得的半群为Markov半群。
3) integrated semigroup
积分半群
1.
An application of integrated semigroup to age-dependent population system;
积分半群在人口发展方程中的一个应用
2.
An application of integrated semigroup in Queueing system;
积分半群在排队系统中的一个应用
3.
In this paper, we discuss the relations between C0 -semigroups andintegrated semigroups and give a representation formulas of integrated semigroups by the convergence of integral of a sequence C0-semigroups.
讨论了积分半群与C0半群的关系,给出了用一组C0半群的积分序列的极限表示积分半群的表示公式。
4) integrated C-semigroups
积分C半群
1.
Through the study of the exponential stability of exponentially bounded C-semigroups and the solution of Cauchy problem,some results for the asymptotic behavior of the integrated C-semigroups have been reached.
通过对指数有界C半群的指数稳定性和Cauchy问题解的研究,得到了关于积分C半群的一些渐近行为的结果。
2.
In this paper, we give the definition of locally Lipschitz continuous integrated C-semigroups and present a new method to solve an integro-differential equation by approximation of the convergence of integral of a sequence of C-semigroups.
引入了积分C半群局部Lipschitz连续的概念。
5) Integrated C-semigroup
积分C-半群
1.
The Generalized Solution Space and Its Applications to Integrated C-semigroups;
广义解空间及其在积分C-半群上的应用(英文)
6) integrated bisemigroups
积分双半群
1.
The relationship between integrated bisemigroups and bisemigroups of linear bounded operators is investigated.
本文研究积分双半群与有界线性算子双半群的关系。
补充资料:半积分极谱法
分子式:
CAS号:
性质:又称卷积伏安法(convolution voltametry),是以记录电流的半积分m与电压E的关系曲线为基础的一种极谱法和伏安法。
CAS号:
性质:又称卷积伏安法(convolution voltametry),是以记录电流的半积分m与电压E的关系曲线为基础的一种极谱法和伏安法。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条