1) Compact real form
紧致实形
2) compact totally real submanifold
全实紧致子流形
1.
The compact totally real submanifolds with parallel mean curvature vector in complexprojective space are studied,and a gap intervai about the length square of these submanifolde secondfundanwntal form is obtained.
研究了复射影空间中具平行平均曲率向量的全实紧致子流形,得到了关于其第二基本形式长度平方的一个空隙区间。
4) compact submanifolds
紧致子流形
1.
This paper deals with the compact submanifolds of constant mean curvature in space forms.
研究空间形式中常平均曲率的紧致子流形,建立了一个关于截曲率下界估计的不等式,通过计算和估计第二基本形式长度平方的Laplacian,得到了关于数量曲率的一个邱成桐型积分不等
5) compact submanifold
紧致子流形
1.
The compact submanifolds in quasi constant curvature Riemannian manifolds with Parallel Mean Curature Vector were studied.
研究拟常曲率黎曼流形中具有平行平均曲率向量的紧致子流形。
2.
A compact submanifold in the local symmetry and complete Riemann manifold with parallel mean curvature vector field was studied, and a pinching theorem of the square of the length of the second fundamental form of this kind of submanifolds was given.
研究了局部对称完备黎曼流形中的具平行中曲率场的紧致子流形 ,得到这类子流形的第 2基本形式模长平方的一个拼挤定理 ,主要证明了当 Mn 是 Nn+p的紧可定向的子流形且具有平行中曲率向量时 ,∫M32 s2 + 83( 1 -δ) ( p -1 ) n -1 s+ ( 1 -2δ -λ| H | ) ns dv≥ 0 ,其中 λ表示 M的沿中曲率方向的第 2基本形式的最小特征值 。
6) conformally compact manifold
共形紧致流形
1.
The main purpose of our paper is to understand the structure of conformally compact manifolds by studying the space of L2 harmonic 1-forms on it.
通过对给定共形紧致流形上的L2调和1形式空间的研究,确定了共形紧致流形的结构。
补充资料:实致
1.犹实际。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条