1) mixed generalized solution
混合广义解
1.
in this paper, the conduction-convection problems in fluid mechanics have been studied and the existence and uniqueness of their mixed generalized solution have been proved with Banach compression fixed point theorem.
研究流体力学中的热传导-对流问题,利用Banach压缩不动点定理证明了其混合广义解的存在性。
2) generalized hybrid control
广义混合控制
1.
Theoretical study on parameters of generalized hybrid control;
广义混合控制参数的理论研究
3) generalized mixed model
广义混合模型
1.
It is possible to construct the generalized mixed model of fractured rockmass by combin.
简述了裂隙岩体渗流离散模型与等效连续模型的优缺点,提出裂隙单元与岩体单元交界面上水头连续而允许流量不连续的观点,通过裂隙单元和岩体单元传导矩阵的组装,建立了三维裂隙岩体渗流广义混合模型。
4) mixed generalized difference method
混合广义差分法
1.
Considering the boundary value problem of the biharmonic equation and letting, then the equation (A) can be transformed to the form:In this paper, we construct the mixed generalized difference method by taking piecewise quadratic trial space and piecewise constant test space.
给出一种解双调和方程的二次混合广义差分法。
5) Generalized mixed prohlem
广义混合问题
6) generalized combined field integral equation (GCFIE)
广义混合场积分
1.
Then, generalized combined field integral equation (GCFIE) hasbeen used to solve 3-.
本文正是针对这种情况,提出了采用电场积分方程方法结合部分耦合原理求得口径面等效磁流,再利用广义混合场积分方程方法求得含腔目标的整体散射特性,并结合一些加速运算的技术手段来降低计算复杂度,节约计算时间,还采用了高阶方法了来减少未知量,节约内存。
补充资料:广义解
广义解
generalized solution
广义解〔笋.阁助目吸自丘旧;丽浦叫eH毗衅ulel..] 微分(伪微分)方程古典解概念的一种推广.数学物理中的许多问题导致此概念的产生,在这些问题中要求把非足够次可微的函数,甚至无处可微的函数,以及更一般的对象诸如广义函数、超函数等等看作为微分方程的解.这样,广义解的概念即与广义导数(罗讹讯】i到山幼垅币记)和广义函教(罗淤区血目细Ic-由n)的概念紧密相关.广义解的概念可追溯到L .Eu-打(fg】). 微分方程 乙(、,D)(。)二艺a:D·u(x)=f(x),(1) l区{落mf任。,(O),a:6C的(O),在类D’(口)中的一个广义解(脚e饭血司501以沁n)是在口中满足方程(l)的D‘(O)中的任一广义函数u,即对于任意检验函数甲〔D(0),等式(u,f伞)=(f,叻成立,其中L*是琢脚列笋意义下L的伴随算子: L’,一,,蒸二‘一,,’“‘D“‘a。,,· 微分方程边值问题的广义解必须在某种适当的广义下(在气(日0)或刀润0)中,等等)满足边界条件,例如,当r~l一0时,在LZ({51=l)中u(rs)~u(s):或者,当t~+0时,在D‘中u(x,t)~“。(x). 对于微分方程的边值问题,在用变分方法求解时,在应用差分方法时,以及在应用R川d曰法(Founern坦山记)、极限吸收原理(h川tah刃rptionPrirldP】e)极限振幅原理(】耐山艰一助叩11橄记eP们盯aP怡)、拟粘性法等等作为古典解的弱极限时产生了广义解. 例.1)方程扩u’=O在D’(R)类中的通解由 一刀(工)生cl士几叭x)十C。歼工)-给出,其中0是Hea油北七函数:x)0时,0(x)=1;x<0时,口(x)二0;占是Din沈d日恤函数(delta-丘mCt沁n);此外,在这里以及下文中的C:,q,…是任意常数. 2)方程护杯十u二O在C伪(R)类中只有一个解,即以一x)e’/x;而在超函数类中,它的通解由公式u(x)=qe,“x一‘0)+Cse’/(x+‘0)+C6a(一x)e’‘X给出. 3)波动方程u,,=aZux:在C(R,)类中的通解由公式u(x,r)=f(x+at)+g(x一a艺)给出,这里f和g是C(R)类中的任意函数. 4)U户眼方程(Upl暇闪送币。n)△。=0在D’(O)类中的每个解u在O中是(实)解析的. 5)热传导方程(h乏t闪uat沁n)。:=少△u在D’中的每个解u是无穷次可微的. 6)每个具有常系数的微分算子L二0都有了类的(缓增)基本解(几叹纽mm因阳lu石on). 7)令L(D)举0是任一常系数微分算子.如果O是一个有界区域,那么对于LZ(O)中任意的f,方程L(D)u=f有广义解u在LZ(O)中. 8)边值问题 △u=f,ul。口=0,feLZ(O)(2)在Co励。类w;”(0)中的广义解u作为求二次泛函 ‘(·卜)(,睿·:‘·2帅‘·在w八o)类中的极小的经典变分问题的解而得到.对于LZ(0)中任意的f,这个变分问题的解在w盗”(0)类中存在并唯一这样,对于所有的fe LZ(O),边值问题(2)的广义解给出了算子△的一个自伴扩张(刚扩张,或Fri改州chs扩张).边值问题(2)的广义解及其所有一阶导数在O中是正则的(即,是O中的局部可积函数);一般而言,它的二阶导数是奇异广义函数.【补注】当解属于D‘(O)时边界值和边界条件的概念的推广需要特别的说明,例如,见L .H6m岌闭阮厂nra蒯声15 ofljl长arpart认ldi晚m吐园。详份tors,第3卷,附录B中的讨论. 有关(拟)粘性法,亦见粘性解(v‘。招ity solu.tio璐).陆柱家译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条