1) left normal element
左正则元
2) left(right) regulor element
左(右)正则元
3) left regular element
左正则元素
4) Weakly left quasi-regular element
弱左拟正则元
5) left quasi-regular element
左拟正则元素
6) left regular band
左正则带
1.
A finite semigroup is an IC abundant semigroup satisfying the left rgularity condition if and only if it is an orthodox superabundant semigroup whose idempotents form a left regular band.
一个有限半群是满足左正则性条件的IC富足半群当且仅当它是一个幂等元形成左正则带的纯整超富足半群,但满足左正则性条件的无限IC富足半群不都是幂等元形成左正则带的纯整超富足半群。
2.
In the paper, a structural theorem of left inverse semigroups is given, which generalizes the standard representations of left regular bands.
作为左正则带的标准表示的推广 ,给出了左逆半群的一个结构定理。
3.
The quasi spined product of an adequate semigroups and a left regular band is introduced here, the quasi spined product structure of type σ semigroups is established.
引进了适当半群和左正则带的拟织积,建立σ型半群的拟织积结构。
补充资料:元则
1.原则,准则。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条