1) left G-regular rings
左G-正则环
1.
The properties of left G-regular rings are given,and the relations among T-pure injective modules,T-cotorsion modules and τ-injective modules are investigated.
刻画了左G-正则环的结构与性质,以及T-纯内射模、T-余扭模、τ-内射模之间的关系。
2) M regular rings
左M-正则环
3) left G-morphic ring
左G-morphic环
1.
Moreover,we show that: If R is a left G-morphic ring,the same is true of eRe for every idempotent e∈R;Every unit π-regular ring is a left(right) G-morphic ring;Every left G-morphic ring is a right GP-injective ring.
我们给出了G-morphic环的定义,证明了如下主要结果:对R中的任意幂等元e,如果R是左G-morphic环,则eRe也是左G-morphic环;每一个幺π-正则环是左(右)G-morphic环;每一个左G-morphic环是右GP-内射环。
4) left(right) G-morphic ring
左(右)G-morphic环
5) left normal element
左正则元
6) left regular band
左正则带
1.
A finite semigroup is an IC abundant semigroup satisfying the left rgularity condition if and only if it is an orthodox superabundant semigroup whose idempotents form a left regular band.
一个有限半群是满足左正则性条件的IC富足半群当且仅当它是一个幂等元形成左正则带的纯整超富足半群,但满足左正则性条件的无限IC富足半群不都是幂等元形成左正则带的纯整超富足半群。
2.
In the paper, a structural theorem of left inverse semigroups is given, which generalizes the standard representations of left regular bands.
作为左正则带的标准表示的推广 ,给出了左逆半群的一个结构定理。
3.
The quasi spined product of an adequate semigroups and a left regular band is introduced here, the quasi spined product structure of type σ semigroups is established.
引进了适当半群和左正则带的拟织积,建立σ型半群的拟织积结构。
补充资料:正则环
正则环
*-regular ring
‘正则环卜一佣.山r对l招;一pe口朋钾Oe劝则。J 带有对合反自同构俐~“*的正则环(仰Nh助-姗愈义下的)(比州肚nllg(谊the别级侣e ofvon卜犯u-~”,使得戊扩=0蕴涵“二0二正则环的幂等元。称为一个投影算子(p咧戊tor),若。*二。.,正则环的每个左(右)理想由唯一的投影算子生成.这样可以谈到·正则环的投影算子的格.若格是完全的,则是一个连续几何(contjnuous罗。能好).一个有齐次基“t,…,a。(。)4)的有补模格(m团过肚妞-石ce)(亦见有补格(】atti优俪伍comPlemet出))是有正交补的格,当且仅当它同构于某个,正则环的投影算子的格.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条