说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 勒让德符号
1)  Legender symbol
勒让德符号
2)  Lengendre symbol
勒让德尔符号
3)  legendre symbol
勒让德记号
4)  legender symbol
勒让得尔符号
5)  Legendre spectrum
勒让德谱
1.
The Legendre spectrums and q-Renyi dimensions of some Moran measures;
一类Moran测度的勒让德谱与q-Renyi维数
2.
By using the proposed method,a monofractal or multifractal sequence can be generated by adjusting the input argument σ,and the self-similarity of a monofractal sequence and the Legendre spectrum of a multifractal sequence depend on the input argument.
针对现有的算法只能生成单分形或只能生成重分形序列的问题,文中提出了一种新的分形序列生成方法——调整方差随机二分法,通过调整该方法中的参数值σ,可生成单分形或重分形序列,而生成单分形序列的自相似度和重分形序列的勒让德谱取决于σ。
6)  Adrien-Marie Legendre (1752~1833)
勒让德,A.-M.
补充资料:勒让德
勒让德(1752~1833)
Legendre,Adrien-Marie

   法国数学家。1752年9月18日生于巴黎,1833年1月10日卒于同地。1770年毕业于马萨林学院。1782年以外弹道方面的论文获柏林科学院奖。1783年被选为巴黎科学院助理院士,两年后升为院士。1795年当选为法兰西研究院常任院士。1813年继任J.-L.拉格朗日在天文事务所的职位。
   勒让德的主要研究领域是分析学(尤其是椭圆积分理论)、数论、初等几何与天体力学,取得了许多成果,导致了一系列重要理论的诞生。勒让德是椭圆积分理论奠基人之一。在L.欧拉提出椭圆积分加法定理后的40年中,他是仅有的在这一领域提供重大新结果的数学家。但他未能像N.H.阿贝尔和C.G.J.雅可比那样洞察到关键在于考察椭圆积分的反函数,即椭圆函数。在关于天文学的研究中,勒让德引进了著名的“勒让德多项式”,发现了它的许多性质。他还研究了B函数和Γ函数,得到了Γ函数的倍量公式。他陈述了最小二乘法,提出了关于二次变分的“勒让德条件”。
   勒让德对数论的主要贡献是二次互反律,这是同余式论中的一条基本定理。他还是解析数论的先驱者之一,归纳出了素数分布律,促使许多数学家研究这个问题。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条