1) quartic C-Bézier curve
四次C-Bézier曲线
1.
Quartic C-curves,including quartic C-Bézier curves and quartic C-B spline curves,are yielded by the basis {sin t,cos t,t2,t,1}.
四次C-曲线是由{sint,cost,t2,t,1}生成的曲线,包括四次C-Bézier曲线和四次C-B样条曲线,具有很多类似于Bézier曲线和B样条曲线的优良性质。
2) quartic rational Bézier spline curve
有理四次Bézier曲线
1.
In this paper,pass weight but is not control point modify have already managed quartic rational Bézier spline curve,carries out G2 continuity for the joining between two adjacent rational quartic Bézier curve;carries out further G2 continuity for the joining between three adjacent rational quartic Bézier curve.
给出了两段相邻的有理四次Bézier曲线G2连续的条件,提出了通过权因子而不是控制顶点来修改有理四次Bézier样条曲线的形状的方法,从而实现了相邻曲线段间的G2的连续拼接;进一步实现了相邻三段曲线间的G2的连续拼接。
3) C-Bézier curve
C-Bézier曲线
1.
Continuous conditions between C-Bézier curves and NURBS curves;
C-Bézier曲线与NURBS曲线的光滑拼接条件
2.
Degree reduction of C-Bézier curves based on disturbance of B net and constrained optimization
C-Bézier曲线降阶的B网扰动和约束优化法
3.
The model with the blending functions is constructed based on the reference [1] to generate C-Bézier curves.
文章利用文献[1]构造出带有参数调配函数的模型,用其生成三次C-Bézier曲线。
4) C-Béier curve
C-Bézier曲线
1.
In this paper, a series of methods are presented to construct the circular arc with C-Béier curves.
利用C-Bézier曲线,给出了圆弧的一系列表示方法,讨论了这些表示方法的相互关系。
5) Quadratic Bézier Curves
二次Bézier曲线
1.
Bisection Algorithms for Approximating Quadratic Bézier Curves by G~1 Biarc Splines;
二次Bézier曲线的双圆弧样条插值二分算法
6) cubic Bézier curve
三次Bézier曲线
1.
Class of cubic Bézier curve with two phape parameters;
一类带两个形状参数的三次Bézier曲线
2.
The curve inherits the most properties of cubic Bézier curve and the shape of Q-Bézier curve can be adjusted by alerting the two shape parameters when the control polygon is maintained.
Q-Bézier曲线不仅具有三次Bézier曲线的特征,而且在控制多边形保持不变的条件下,具有形状可调性和对控制多边形更好的逼近性。
3.
Firstly, a quintic PH-spline curve is used to approximate a cubic Bézier curve within a bound.
研究用C1连续的五次Pythagorean-Hodograph样条曲线逼近一给定的三次Bézier曲线,证明了这种逼近算法在常用误差测度下的收敛性。
补充资料:Lamé曲线
Lamé曲线
Lame curve
I月.成曲线11月I说。.、e;几翻妞e哪恤皿l 一类平面代数曲线,在DeS口吐巴直角坐标系中它的方程具有下列形式: [、1’.f,1’_, l二二一I+l二l‘1. [“」Lb」其中m=p/q,p和q是两个互素数,。>O,b>0.如果m>O,则肠耐曲线的次数是Pq,如果,<0,则是Zpq.如果爪=1,则1刁n说曲线是一条直线,如果m=2,则是椭圆,如果m=2/3,而a二b,则是星形线(咫位。id).助赚曲线因G.U而而得名,他于1818年研究过这种曲线.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条