1) generalized energy integral
广义能量积分
1.
The result shows that the Birkhoffian system has generalized energy integrals and cyclic integrals.
结果显示 :Birkhoff系统存在广义能量积分和循环积分 ,每个积分可使Birkhoff系统降两
2.
In this article, the expression on the conditions under which the generalized energy integral exists is discussed,and the physical significance of the general energy integral is expounded.
讨论广义能量积分存在条件的表述,并阐明广义能量积分的物理意义。
2) infinite integration with parameter
含参量广义积分
1.
In this paper,The uniform convergence and local uniform convergence and meta-uniform-convergence in infinite integration with parameter are discussed.
主要讨论含参量广义积分一致收敛性、局部一致收敛性和亚一致收敛性以及相互之间的关系。
3) integral of generalized momentum
广义动量积分
4) generalized integrator
广义积分
1.
Iterative generalized integrator algorithm based ternary variable structure control for active power filter;
基于广义积分迭代算法的有源滤波器三重变结构控制
2.
In this mean generalized integrator is used for frequency dividing integral and fuzzy arithmetic is for adjusting PI coefficients timely.
该文由常用的并联型HAPF的结构特点分析出发,从容量和幅频特性2个方面探讨HAPF控制中进行有效分频的必要性,根据HAPF对控制方法的要求,文章提出一种基于广义积分的模糊自整定PI控制方法,即通过广义积分实施对周期量的分频积分,同时由模糊算法进行比例和积分系数的在线调整,从而有效实现对HAPF的分频控制。
3.
This paper proposes an iterative generalized integrator algorithm to eliminate the steady error in active power filters.
针对有源滤波器滑模变结构控制的有差调节问题,提出了一种广义积分迭代控制算法来降低稳态误差,并将该控制算法的输出结果作为滑模变结构控制中的等效控制,形成三重变结构控制器。
5) improper integral
广义积分
1.
Evaluations of the first kind improper integral integral from n=0 to ∞( [sinαx/x])~ndx;
一类广义积分integral from n=0 to ∞( [sinαx/x])~ndx的计算
2.
Comment on the Astringency of Improper Integral
广义积分敛散性的一点注解
3.
Then, based on the upper-bound theorem,a general solution to unit indentation pressure isobtained through parametric integration and improper integral.
由上界定理经参量积分、广义积分求得冲头单位压力通解后,以待定参数法求得通解最小上界值。
6) generalized integral
广义积分
1.
A discriminance to decide convergence or divergence of generalized integral ∫ from n=a to +∞(f(x)dx);
广义积分∫from n=a to +∞(f(x)dx)敛散性的一种判别法
2.
The convenient calculation of generalized integral of odd and even function in infinite interval (-∞,+∞);
无穷区间(-∞,+∞)上奇、偶函数的广义积分的简便计算
3.
Computatoinal approach of a kind of generalized integral;
一类广义积分的计算方法
补充资料:广义能量积分
见拉格朗日方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条