1) Noether's inverse theorem
Noether逆定理
3) Noether theorem
Noether定理
1.
The regularization of dual complete convolution equation in null class and Noether theorem;
{0}类中对偶型完全卷积方程的正则化及Noether定理
2.
The constraints are invariant under the total variation of canonical variables including time, we can also deduce the classical canonical Noether theorem and Poincare-Cartan integral invariant for a system with a singular higher-order Lagrangian, which differs from the previous work to require that the constraints are invariant under the simultaneous variations of canonical variables.
指出约束在包含时间在内的正则变量的总变分下不变时,仍可导出高阶微商奇异Iagrange量系统经典正则Noether定理和Poincare-Cartan(PC)积分不变量;不同的是,在以往文献中要求约束在正则变量的等时变换下不变。
3.
Based on the phase-space generating functional of Green function for a constrained Hamiltonian system with finite degree of freedom, the Noether theorem in quantum case under the global symmetry in phase space is derived for such a system.
基于有限自由度约束Hamilton系统的Green函数的相空间生成泛函,导出了该系统在相空间中整体对称下的量子形式Noether定理。
4) quantal Noether theorem
量子Noether定理
5) Noether's conserved theorem
Noether守恒定理
6) canonical Noether theorem
正则Noether定理
补充资料:逆定理
逆定理
converse theorem
逆定理l姗ve倪山e毗m户城阿r幽T即伴Ma] 一个定理,其前提是原定理(正定理)的结论,其结论是原定理的前提.逆定理的逆定理是原定理(正定理),因此、正定理和逆定理是一互逆的. 逆定理等价于正定理的相反定理,即把正定理的前题和结论分别换为其否定而得到的定理.所以,正定理等价于逆定理的相反定理,即这个定理断言:如果正定理的结论不成立,则它的前题也不成立.众所周知的“反证法”,恰好就是用逆定理的相反定理的证明来代替正定理的证明.两个互逆定理的成立意味着:其中任何一个定理的前题成_、丈,不仅仅是其结论成立的充分条件,而且是必要条件.亦见定理(theorem);必要和充分条件(ne份ssary and suffident conditions).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条