1) Noether theory
Noether理论
1.
The integrals of the equations can be obtained by using the Noether theory and the Poisson theory.
研究用Noether理论和Poisson理论求其积分。
2.
Secondly, the first integrals of the equations can be obtained by using the Noether theory of the Hamilton system.
其次,利用Hamilton系统的Noether理论求守恒量。
4) Noether theorem
Noether定理
1.
The regularization of dual complete convolution equation in null class and Noether theorem;
{0}类中对偶型完全卷积方程的正则化及Noether定理
2.
The constraints are invariant under the total variation of canonical variables including time, we can also deduce the classical canonical Noether theorem and Poincare-Cartan integral invariant for a system with a singular higher-order Lagrangian, which differs from the previous work to require that the constraints are invariant under the simultaneous variations of canonical variables.
指出约束在包含时间在内的正则变量的总变分下不变时,仍可导出高阶微商奇异Iagrange量系统经典正则Noether定理和Poincare-Cartan(PC)积分不变量;不同的是,在以往文献中要求约束在正则变量的等时变换下不变。
3.
Based on the phase-space generating functional of Green function for a constrained Hamiltonian system with finite degree of freedom, the Noether theorem in quantum case under the global symmetry in phase space is derived for such a system.
基于有限自由度约束Hamilton系统的Green函数的相空间生成泛函,导出了该系统在相空间中整体对称下的量子形式Noether定理。
5) Noether's inverse theorem
Noether逆定理
6) quantal Noether theorem
量子Noether定理
补充资料:Noether空间
Noether空间
Noetfaerian space
N‘绷心空间(N伙山曰‘l娜,Ce;班TeP000n钟e冲明e.o] 一个拓扑空间(toPOlo乡司spa此)X,其中闭子空间的任何严格下降的链都会中断.一个等价条件是:X的闭子集的任何非空族都有关于包含关系为序的极小元.N吮廿坦r空间的每个子空间本身也是NoeUrr空间.如果空间X有一个Noc吐ler子空间的有限覆盖,则X也是NoeUzer的.空间X是N吮让记r的当且仅当X的每个开子集都是拟紧的.N讼川比r空间X是有限多个不可约分支的并. N沃劝巴空间的例子是交换环的谱(见环的谱(spe-沈田m of an刀g)).对于一个环A,空间Sp戈(A)(A的谱)是Nb洲比r的当且仅当A/J是N血劝.环(N叱t比~血g),这里J是A的幕零理想.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条