1) relative derivative
相对导数
1.
The definitions of the relative derivatives of a tensor with respect to time in any reference frame by using the notation of vectrix were proposed.
提出了用矢阵表示的张量对时间的相对导数的概念 。
2.
This article profoundly revealed the reference system problem in momentum dotand momentum parameters cd the "dot complex motion"; and the absolutederivative and relative derivative for any variable vector and K s accelerationproblem, etc.
本文深刻地揭示了“点的复合运动”中动点和动参考系的问题、任一变矢量的绝对导数、相对导数的问题和科氏加速度等问题。
2) logarithmic derivative
对数导数
1.
In the scientific researches, the basic theories on the real logarithmic derivative and the logarithmic integral are established.
提出了实对数导数与对数积分的基本理论 ,证明了实对数导数和对数积分与 (常义 )导数和积分的关系及充要条件 ,所得到的定理与公式在实数域内对处理函数乘、除、乘方、开方及复合函数的性质具有独特的优势 。
2.
It is known that the model of the universal Teichmüller space by the logarithmic derivatives is the union of infinite many disconnected components.
万有Teichmüller空间在对数导数模型下是由无穷多个不相交的连通分支组成的。
3) Logarithm-Derivative
对数-导数
4) Pre-Schwarzian derivative
对数导数
1.
Also we estimate the pre-Schwarzian derivative inner radius of univalency for the exterior of the triangle.
得到了扇形外部区域的Schwarz导数单叶性内径以及三角形外部区域的对数导数单叶性内径的一个下界估计。
5) Relative navigation
相对导航
1.
Performance analysis and simulation of JTIDS relative navigation;
JTIDS相对导航性能分析和仿真
2.
A distributed filter algorithm for GPS/INS relative navigation in formation flight;
编队飞行GPS/INS相对导航的分布滤波算法
3.
Study on Algorithms and Hardware-In-The-Loop Simulation of Integrated Vision/Inertial Relative Navigation;
视觉/惯性组合相对导航算法及物理仿真研究
6) symmetric derivative
对称导数
1.
In this paper,symmetric derivative and symmetric partial derivative are researched and some new differential mean value theorems are defined.
针对对称导数、对称偏导数,给出了一些新形式的微分中值定理。
2.
Through studying symmetric derivative , the author gives many simple properties about it .
对对称导数作了些探讨,并给出对称导数的一些简单性质。
3.
Four important conclusions of deciding functional convexity will be available by converting derivative into differential quotient, derivative and second-order derivative into symmetric derivative and second-order symmetric derivative respectively.
"改微为差",改导数和二阶导数分别为对称导数与二阶对称导数,即可得到判定函数凸性的四个重要结论。
补充资料:delaVallée-Poussin导数
delaVallée-Poussin导数
de la VaDce - Poussin derivative
山hV团倪一P加石幽1.导数【de hVa肠纯一R版动l心由.dve;Ba服ny伙ella甲山即口.1,广义对称导数(罗nerali-欲互s脚四netric deriVa石ve) 由Ch.J.de h vall能一Poussin(【11)定义的一种导数.设r为偶数,并设存在占>O使对满足}t}<占的一切t,有 合{f(x。+‘,+f(x。一艺,,- 一刀。+冬:,口2+…+弄。r且+:(:):r,(*) 2一r名r!一rr‘、一,一,其中声:,…,戊为常数,下(t)~o(当t~O)且下(o)=0.数尽”f(r)(x0)称为函数f在点x。的:阶dehvallee-Poussin导数或;阶对称导数. 奇阶r的dehV么11阮一Po璐in导数可类似定义,只要把方程(*)代之为 冬仃(、+‘)一了(、一:)}- 2 一。。1十冬‘,。、十…十共:r坟十:(:):: 3!一厂Jr!一r”‘、一z一’ deh从山阮一Poussin导数左,帆)与R~nn二阶导数相同,后者常称为 Sch认么反导数.若关r)闻存在,则几一2)闻(r)2)也存在,但f(r一l)(x0)未必存在.若存在有限的通常双边导数f(r)帆),则人r)帆)二f‘r)(x0).例如,对函数f(x)二sgnx,f(川(0)=0,k=1,2,‘二,但左*+1)(。)(k=0,1,…不存在.若de h vall由一Po.in导数人。)(x0)存在,则由f的Fo~级数逐项微分r次所得级数S‘r)(f)在x。对于“>r是(C,的可和的,其和为寿)帆)([2〕)(见C威的求和法(。滋ms~·tion methods)).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条