1) real logarithmic derivative
实对数导数
1.
In this paper, the formulas of real logarithmic derivative are proved in solving product, quotient, power, radical and composition of functions in the real domain.
证明了实对数导数在实数域内处理函数积、商、幂、方根及复合函数的计算公式 ,并把这些定理和公式应用到简化求导运算、误差估计和经济弹性分析
2.
In the scientific researches, the basic theories on the real logarithmic derivative and the logarithmic integral are established.
提出了实对数导数与对数积分的基本理论 ,证明了实对数导数和对数积分与 (常义 )导数和积分的关系及充要条件 ,所得到的定理与公式在实数域内对处理函数乘、除、乘方、开方及复合函数的性质具有独特的优势 。
2) logarithmic derivative
对数导数
1.
In the scientific researches, the basic theories on the real logarithmic derivative and the logarithmic integral are established.
提出了实对数导数与对数积分的基本理论 ,证明了实对数导数和对数积分与 (常义 )导数和积分的关系及充要条件 ,所得到的定理与公式在实数域内对处理函数乘、除、乘方、开方及复合函数的性质具有独特的优势 。
2.
It is known that the model of the universal Teichmüller space by the logarithmic derivatives is the union of infinite many disconnected components.
万有Teichmüller空间在对数导数模型下是由无穷多个不相交的连通分支组成的。
3) Logarithm-Derivative
对数-导数
4) Pre-Schwarzian derivative
对数导数
1.
Also we estimate the pre-Schwarzian derivative inner radius of univalency for the exterior of the triangle.
得到了扇形外部区域的Schwarz导数单叶性内径以及三角形外部区域的对数导数单叶性内径的一个下界估计。
5) material derivatives
实质导数
6) symmetric derivative
对称导数
1.
In this paper,symmetric derivative and symmetric partial derivative are researched and some new differential mean value theorems are defined.
针对对称导数、对称偏导数,给出了一些新形式的微分中值定理。
2.
Through studying symmetric derivative , the author gives many simple properties about it .
对对称导数作了些探讨,并给出对称导数的一些简单性质。
3.
Four important conclusions of deciding functional convexity will be available by converting derivative into differential quotient, derivative and second-order derivative into symmetric derivative and second-order symmetric derivative respectively.
"改微为差",改导数和二阶导数分别为对称导数与二阶对称导数,即可得到判定函数凸性的四个重要结论。
补充资料:对数导数
对数导数
logarithmic derivative
对数导数〔晌笋袱腼血血由a.e;‘呷砷桃叨c幽nPO,H3.。朋朋1 给定的函数的对数的导数.【补注】设f:〔a,b1~R是正函数,则它的对数导数等于(Inf),一专·张鸿林译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条