1) extension σfield
可拓σ-域
2) extension field
可拓域
1.
In order to study contradictory problems of multilayer multidimensional complex systems, based on the concept of n-dimensional matter element extension set, the concepts of multilayer multidimensional matter element system extension set and its positive field, negative field, zero boundary and its extension field as well as its stable field were given.
为了研究多层多维复杂系统的矛盾问题,运用可拓学原理,在n维物元可拓集概念的基础上,提出了多层多维物元系统可拓集及其正域、负域、零界的概念,给出了多层多维物元系统可拓集的可拓域、稳定域的定义,讨论了多层多维物元系统可拓集的一些性质。
2.
The difinitions of the n-dimensional extension set and its extension field were given.
本文给出了n维可拓集合及其可拓域的定义,并讨论了有关的运算和性质,最后提出了k维正域等概念。
3.
Definitions of an extension field,and a stable field of multilayer multidimensional relation element extension set are given.
给出了多层高维关系元可拓集的可拓域、稳定域的定义。
3) Extensive domain
可拓域
1.
In this paper, We study some properties of positive domain and negative domain and zero domain and extensive domain and stable domain about stochastic extensive set.
本文研究随机可拓集的正域、负域、零域及可拓域、稳定域的一些性质。
4) extension region
可拓域
1.
The extension region or the stable region to the negative transformation is expressed with the intersection or union of the extension region or the stable region to the primitive transformation.
主要讨论经典集、模糊集和可拓集之间的关系,及可拓集的交、并关于否变换的可拓域和稳定域如何用原变换来表达,并导出可拓集之并、交的可拓域和稳定域的几个性质。
2.
Based on that,the definitions of two dimensional relation functions and their extension region are given.
以一新的形式给出平面域上“距与位值”的概念,并得到若干性质,在此基础上建立了二元关联函数及其可拓域。
5) λ-extension domain
λ-可拓域
6) generalized extension field
广义可拓域
1.
he concepts of the generalized extension field and the generalized stable fieldare established; their practical background and the relationship beween theextension field and the stable field are discussed; and their basic properties arestudied.
给出了广义可拓域和广义稳定域的概念,讨论了它们的实际背景以及与可拓域、稳定域的关系,并获得了它们的若干性质。
补充资料:超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
伦敦第二个方程(见“伦敦规范”)表明,在伦敦理论中实际上假定了js(r)是正比于同一位置r的矢势A(r),而与其他位置的A无牵连;换言之,局域的A(r)可确定该局域的js(r),反之亦然,即理论具有局域性,所以伦敦理论是一种超导电性的局域理论。若r周围r'位置的A(r')与j(r)有牵连而影响j(r)的改变,则A(r)就为非局域性质的。由于`\nabla\timesbb{A}=\mu_0bb{H}`,所以也可以说磁场强度H是非局域性的。为此,超导电性需由非局域性理论来描绘,称超导电性的非局域理论。皮帕德非局域理论就是典型的超导电性非局域唯象理论。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条