1) the new equation of amplitude
场幅新方程
2) new Hamiltonian amplitude equation
新的Hamiltonian振幅方程
1.
Periodic wave solutions for a new Hamiltonian amplitude equation;
一个新的Hamiltonian振幅方程的周期波解
3) amplitude equation
振幅方程
1.
It is assumed that the fluid in the circular cylindrical vessel is inviscid,incompressible and the motion is irrotational, a nonlinear amplitude equation with cubic and vertically excited terms of the vessel was derived by expansi.
在柱坐标系下,通过奇异摄动理论的多尺度展开法求解势流方程,研究了垂直强迫激励圆柱形容器中的单一模式水表面驻波模式· 假设流体是无粘、不可压且运动是无旋的,在忽略了表面张力的影响下,用两变量时间展开法得到一个具有立方项以及底部驱动项影响的非线性振幅方程· 对上述方程进行了数值计算,计算的结果显示了在不同驱动振幅和驱动频率下,会激发不同自由水表面驻波模式,从等高线的图像来看,和以往的实验结果相当吻合·
2.
On the basis of the wave equation,the amplitude equation of hyperbolic reaction diffusion equation for glycolysis model is derived by using perturbation theory,and it brings the theoretical basis for numerical studies.
在波动方程基础上,利用微扰理论求得糖酵解模型(修正Selkov模型)双曲型反应-扩散方程的振幅方程,为数值研究提供了理论根据。
4) small amplitude equation
小振幅方程
1.
On the basis of considering the variation of diffusive flux with time,the hyperbo lic reaction diffusion equation and corresponding wave equation for low concentrational Brussellator is developed,and the small amplitude equation near Hopf bifurcation point is derived by using perturbation theory.
首先在考虑扩散流随时间变化的基础上,建立了低浓度三分子模型的双曲型反应-扩散方程及其波动方程,然后运用奇异微扰理论导出在Hopf分岔点处的小振幅方程,为研究系统的能量演化奠定了理论基
5) amplitude Squared squeezing of the field
场振幅平方压缩
6) Einstein field equation
Einstein场方程
1.
Approximate solution of the cosmological model of Gdel type is obtained for the ideal matter source by solving Einstein field equation.
在引力源为理想流体条件下,通过对Gdel宇宙基本性质的分析求解了Einstein场方程,给出了一个Gdel宇宙时空度规的近似解。
2.
Approximate solution of the expanding cosmological model of Gdel type is obtained for the vacuum by solving Einstein field equation.
在真空情况下,通过求解Einstein场方程,给出了一个关于膨胀的Gdel宇宙时空度规的近似解。
补充资料:爱因斯坦引力场方程
见广义相对论。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条