说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 新方程
1)  new equation
新方程
2)  renewal equation
更新方程
1.
In this paper, both Laplace transform renewal equation of penalty function (u) and classical limie theory have been used in this study.
罚金函数的计算问题是精算数学有待深入探求的一个问题;为此,本文在文献[1]、[2]工作的基础上,用Laplace变换、罚金函数(u)的更新方程和经典的极限理论,就此问题进行全面较深入地探讨,获得了罚金函数(u)几个初等函数近似表达式,使(u)的计算成为可能;同时获得了精算数学推广的Lundberg公式。
2.
this paper,a Lévy risk model perturbed by diffusion is discussed and a result that G-S functionΦsatisfies a renewal equation is obtained.
通过对带扰动项的Lévy风险过程的研究得到了其罚金折现期望(G-S)函数满足的更新方程,并给出了它的一个无穷级数表达式。
3.
Finally,the fuzzy random style of renewal equation is given.
基于模糊随机理论,介绍了模糊更新过程的更新函数及其数学期望,讨论了更新函数的数学期望的性质特征,最后介绍了模糊更新方程
3)  renewal equations
更新方程
4)  oseen equation
奥新方程
5)  the new equation of amplitude
场幅新方程
6)  new auxiliary equation
新辅助方程
1.
Based on the homogeneous banlance method,tanh-function method and auxiliary equation method,new types of exact solitary wave solutions of the(2+1)-dimensional breaking soliton equation are constructed by using a new auxiliary equation.
在齐次平衡法、双曲正切函数法和辅助方程法的基础上引入新辅助方程构造了(2+1)维破裂孤子方程的新的精确孤立波解。
2.
Based on tanh_function method, homogeneous balance method and auxiliary equation, a new auxiliary equation was introduced in the paper, meanwhile, a new invariance solution was obtained, and a new exact solitary wave solution for Benjamin_Bona_Mahoney(BBM) equation and modified BBM equation was constructed using the symbolic calculation system of Mathematica.
在双曲正切函数法、齐次平衡法、辅助方程法的基础上引入非线性发展方程的一个新形式解和新辅助方程,并利用符号计算系统Mathematica构造了Benjamin-Bona-Mahoney(BBM)方程和修正的BBM方程的新精确孤立波解。
3.
New exact solitary wave solutions of the sine-Gordon,double sine-Gordon,sinh-Gordon and Other third order equations are constructed by using a new auxiliary equation and functional transformations.
用新辅助方程和函数变换,构造了sine Gordon方程、双sine Gordon方程、sinh Gordon方程和Otherthirdorder方程的新的精确孤立波解。
补充资料:泊松方程和拉普拉斯方程
      势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
  
  简史  1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
  
  静电场的泊松方程和拉普拉斯方程  若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
  
   ,
  式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
  
   。
  在各分区的公共界面上,V满足边值关系
  
  
  
  
  式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
  
  边界条件和解的唯一性  为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
  
  边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
  
  除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
  
  静磁场的泊松方程和拉普拉斯方程  在SI制中,静磁场满足的方程为
  
  
  式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
  
  
  
  在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
  
  
  选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
  
  
  式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
  
  
  静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
  
  

参考书目
   郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
   J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条