1) homogeneous linear difference equation
齐次线性差分方程
1.
General solution of second-order homogeneous linear difference equations and its application;
一类二阶齐次线性差分方程的通解及其应用
2) inhomogeneous linear difference equation
非齐次线性差分方程
1.
The formula gives the solution that satisfies the initial condition in solving the system of nonhomogeneous linear differential equations with constant coefficients and the system of inhomogeneous linear difference equations with constant coefficients.
分别给出了常系数非齐次线性微分方程组和常系数非齐次线性差分方程组在给定的初始条件下的求解公
3) non-homogeneous linear difference equation
常系数非齐次线性差分方程组
4) homogeneous linear difference equations with constant coefficients
常系数齐次线性差分方程组
1.
Much discussion has been made on the methods for the solution to homogeneous linear difference equations with constant coefficients,but none are simple enough.
常系数齐次线性差分方程组的求解方法,已有作者讨论过,但都没有给出一个比较简便的计算方法。
5) constant coefficient homogeneous linear difference equation
常系数齐次线性差分方程
1.
The constant coefficient homogeneous linear difference equation is changed to multiplication of a matrix and a vector.
将常系数齐次线性差分方程改写为矩阵与向量乘积形式的递推关系,通过计算若当矩阵的幂,并运用相似矩阵的理论给出了常系数齐次线性差分方程通解的解析形式。
6) linear difference systems with const coefficients
常系数线性齐次差分方程组
补充资料:二阶线性齐次微分方程
二阶线性微分方程的一般形式为
ay"+by'+cy=f(1)
其中系数abc及f是自变量x的函数或是常数。函数f称为函数的自由项。若f≡0,则方程(1)变为
ay"+by'+cy=0(2)
称为二阶线性齐次微分方程,而方程(1)称为二阶线性非齐次微分方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条