1) linear even differential equation
线性齐次微分方程
1.
The solution of the interlace series type linear even differential equation of contain negative twice power function and arrangement number;
负二次幂交错级数型线性齐次微分方程
2.
By transforming linear even differential equation into the linear differential equation of successive integral,we have found out that,with strict proof,we can popularize it and get to untie.
通过把线性齐次微分方程x2y(n)+2nxy(n-1)+n(n-1)y(n-2)=0化为可逐次积分的线性微分方程,找出了它的通解形式,给出了严格的证明,并将其推广,得到x2y(n)+(x2+2nx)y(n-1)+[2(n-1)x+n(n-1)]y(n-2)+(n-1)(n-2)y(n-3)=0的通解。
3.
By transforming linear even differential equation x~3y~((n))+ 3nx~2y~((n-1))+ 3n(n -1)xy~((n-2)) + n(n -1) (n - 2) y~((n-3)) = 0 change into the linear differential equation of successive integral,have found it to know the form that untied,have given strict proof,and through example,have introduced it\'s application.
通过把完全三次方型线性齐次微分方程:x~3y~((n))+3nx~2y~((n-1))+3n(n-1)xy~((n-2))+n(n-1)(n-2)y~((n-3))=0化为可逐次积分的线性微分方程,找出了求这类方程通解的方法与理论,对所得定理给出了严格的证明,并通过实例介绍了它的应用。
2) non homogeneous and linear differential equations
非齐次线性微分方程组
1.
A method to solve non homogeneous and linear differential equations by homogenization high precision direct integration (HHPD P) was proposed.
根据函数分段插值逼近的思想 ,在一个积分步长内用多项式近似表示方程的非齐次项 ,提出了一种原理简单、实施容易的求解非齐次线性微分方程组的新型齐次扩容精细积分法 ,该方法不涉及矩阵的求逆运算 ,不需要计算傅里叶级数展开系数的振荡函数积分 ,且在一个积分步长内只求解一个相应的齐次扩容微分方程组 ,因而本方法和已有的同类方法相比具有更高的计算精度和效率 ,数值算例表明了该方法的有效
3) homogeneous linear differential equation
齐次线性微分方程
1.
Several types which can be reduced for third order homogeneous linear differential equation with varied coefficient;
几种可降阶的三阶变系数齐次线性微分方程类型
2.
In this paper we investigate the growth of solutions of second order homogeneous linear differential equations f″+Ae pf′+Be Qf=0 where P,Q are polynomials with different degrees,A,B are entire functions,their orders are less than orders of e p,e Q respectively.
该文研究了二阶齐次线性微分方程f″+Aepf′+BeQf=0的解的增长性,其中P,Q为次数不同的多项式,A,B为级分别小于eP,eQ的级的整函数。
4) homogeneous linear ordinary differential equation
齐次线性常微分方程
1.
In this paper,the variational stability of bounded variation solutions to homogeneous linear ordinary differential equations are disscussed by using Henstock integral and Lyapunov function,the Lyapunov type theories for variation stability and variational-asymptotically stability of bounded variation solutions are established.
利用Henstock积分和Lyapunov函数,讨论了齐次线性常微分方程有界变差解的稳定性,建立了有界变差解的变差稳定性和变差渐近稳定性的Lyapunov型定理。
补充资料:二阶线性齐次微分方程
二阶线性微分方程的一般形式为
ay"+by'+cy=f(1)
其中系数abc及f是自变量x的函数或是常数。函数f称为函数的自由项。若f≡0,则方程(1)变为
ay"+by'+cy=0(2)
称为二阶线性齐次微分方程,而方程(1)称为二阶线性非齐次微分方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条