说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 集值随机过程
1)  set-valued stochastic processes
集值随机过程
1.
Newton-Leibniz formula of set-valued stochastic processes;
集值随机过程的Newton-Leibniz公式
2.
This paper defines and studies the stability of set-valued stochastic processes.
平稳集值随机过程是一般平稳随机过程的推广 ,给出集值随机过程具备平稳性的一个充分必要条件 ,进而给出平稳随机过程的一个性质 。
2)  Set-valued Stochastic Process
集值随机过程
1.
Existense Theorems of Variance of Mean Integration in Respect to Set-valued Stochastic Process;
集值随机过程的均方积分的存在性定理
2.
As a new and developing research field, Set-valued variable and Set-valued stochastic process is not perfect both in theory and practical application, and need to be further explored and developed.
集值随机变量与集值随机过程作为一个新兴的研究领域,无论在理论上还是实际应用上面都不太成熟,不够完善,需要进一步的探索与开发。
3)  bounded closed convex set-valued stochastic processes
有界闭凸集值随机过程
1.
In order to study the derivative and integral theories of the set-valued stochastic processes,the mean square derivative of the bounded closed convex set-valued stochastic processes is presented firstly by means of the weak convergence and open notion of sets.
为了研究集值随机过程的微积分理论 ,利用有界闭凸集合弱收敛的性质和集合“开”的概念 ,给出了有界闭凸集值随机过程的均方导数的定义 ,建立了均方导数的若干性质 ,并讨论了集值随机过程均方可导与均方连续的关系。
2.
In order to study the integral and differential theories of the set-valued stochastic processes,the Riemann integral of the bounded closed convex set-valued stochastic processes is firstly given.
为研究集值随机过程的微积分理论 ,首先利用支撑函数定义了二阶矩有界闭凸集值随机过程的均方 Riemann积分 ,其次利用支撑函数以及均方收敛的性质证明了二阶矩有界闭凸集值随机过程的均方 Rie-mann积分的线性性、同数学期望的可交换性等性
4)  fuzzy set-valued processes
模糊集值随机过程
5)  stationary set valued stochastic process
平稳集值随机过程
1.
In this paper, we prove the ergodic theorem of a stationary set valued stochastic process by the representation theorem.
本文作为平稳集值随机过程的表示定理的应用,证明了平稳集值随机过程的遍历性定理。
6)  B-valued stochastic process
B-值随机过程
1.
Let { Γ(t),t∈R} be a Banach spaceB-valued stochastic process.
设{Γ(t),t∈R}是Banach空间B-值随机过程,对某个K,γ,β>0,有P{‖Γ(t+a)-Γ(t)‖ xσ(a)} Kexp(-γxβ),我们可以得到它的一些关于连续模及增量的极限定理。
补充资料:独立增量随机过程


独立增量随机过程
tochastic process with independent increments

独立增里随机过程「劝刘巨浦c拌.义冠弓初山侧吻创如t加盆,曰n臼lts;cjl抖浦.咸nP0uecc c Ite3洲cltMuM.uP-“P啊eHll,刚』 一种随机过程(s勿比邵石cp~)X(t),对任意自然数”和所有实数O蕊:,<口,簇:2<吞2簇…蕊,。<口。,增量X(乃;)一X(‘J),…,X(刀。)一X(,。)是相互独立随机变量,独立增量随机过程称为齐次的(holll。罗11印us),如果X(:+h)一X(。),0(戊,oO,当t’,t时 p{}Y(t‘)一Y(t)}>。}~0.W汹犯r过程(Wiemr Proo巴粥)和Pb远翔1过程(Po哪npr(x芜‘s)是随机连续的独立增量随机过程的例子(前者的实现以概率1连续,后者的实现是跳跃值等于l的阶梯函数).独立增量随机过程的一个重要例子是稳定过程(见稳定分布(stable面tribution)).随机连续的独立增量随机过程(以概率1)只有第一类间断点.这种过程的值的分布对任意t是无穷可分的(见无穷可分分布(inf谊此ly一山北ible dis州bution))可以用特征函数(chara叱ristic ftmct」on)方法研究独立增量随机过程.关于过程穿越边界的概率以及第一次穿越时间的概率分布等问题,可用所谓因子分解恒等式(fac-tori山tion jdenti往留)来解决.”协月片,巴爹‘人队见随饥双桂L StDchasl」e Process). 刘秀芳译陈培德校
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条