2) random process theory
随机过程理论
1.
From the frequency response function of the quarter car,the response function of the displacement difference between above-spring and beneath-spring mass is obtained by means of the random process theory.
将路面不平整度假设为随机平稳变量而作为四分之一车模型的激励,并基于随机过程理论,通过频率响应函数求得簧上质量与簧下质量的竖向位移差的响应,由响应统计特性建立国际平整度指数IRI与簧上质量的功率谱密度均方值之间的线性相关关系。
2.
This paper optimizes the inventory management of logistics with the application of random process theory.
基于随机过程理论对物流活动中的库存管理进行优化。
3) stochastic process
随机过程
1.
A numerical simulation of the track irregularity stochastic process;
轨道不平顺随机过程的数值模拟
2.
Convergence of the sum of a kind of stochastic process;
一类随机过程之和的收敛性
3.
Measurability on Two-Dimensional Stochastic Processes;
两参数随机过程的可测性
4) stochastic processes
随机过程
1.
Orthogonal expansion of stochastic processes for wind velocity;
脉动风速随机过程的正交展开
2.
The calculation of value at risk when cumulative investment and interest rate is correlative stochastic processes is discussed, and the concept and its calculation of relative value at risk is proposed.
讨论了累积投资和利率为相关随机过程的风险价值,并提出相对风险价值的概念和计算,借助于Monte Carlo模拟分析了累积投资分布参数以及利率参数变化时对于相对风险价值的影响。
3.
A method based on normalized orthogonal bases is proposed to decompose stochastic processes,so as to capture main probabilistic characters of a stochastic process with only a few random variables,and establish a solid foundation for structure stochastic dynamic response and reliability assessment.
建议了一类基于标准正交基的随机过程展开方法。
5) random process
随机过程
1.
Time-dependent reliability analysis of ship structure based on random process theory;
基于随机过程理论的舰船结构时变可靠性分析
2.
Dynamic reliability analysis and compare of rail based on random process over-crossing theory;
基于随机过程跨越理论的钢轨动力可靠性分析与比较
3.
Evaluation method for project risk based on random process analysis;
基于随机过程分析的项目风险评估方法
6) random processes
随机过程
1.
Review on simulation methods of random processes in engineering;
工程中随机过程的数值模拟方法及其评述
补充资料:随机过程论中的统计问题
随机过程论中的统计问题
statistical problems in the theory of stochastic processes
究对于探讨尸。与尸。可能的奇异性也是有用的. 例4假定观测或者为x(t)二w(t),其中w(0为一Wi印er过程(Wiener process)(H。假设),或者x(r)=州t)+w(t),其中附为一非随机函数(H,假设).如果m’6L2(0,T),则测度p(,,pl是相互绝对连续的,而如果。’必L:(0,T),则它们是相互奇异的.其似然比等于 d尸了 豆可Lx)-一{一合)〔优,(!)」2己亡·!川,(!)J·(亡)}· 例5.设x(t)二6十心(t),其中口为实参数而老(0为一零均值的平稳Gauss的Map珊过程(Markov妙cess),且有已知的相关函数厂(t)二。一“,‘,,:>0.此时测度尸子是相互绝对连续的,且有似然函数 dP不 万可气“)-一。p呀冬。二(。)、冬。二(:)、冬。:i、(才)‘: 一r tZ一’一、一’2“’一‘一‘2一才一‘一’- 一冬。2一牛。2::). 2“4-一j 特别地,x(o)+x(T)+:丁Jx(:)‘。关于族p万是一充分统计最(sul五cie以statistic), 随机过程统计中的线性问题.设观测了函数 血 x(。)二艺口,伞,(:)+七(:),(*) l其中奴t)是零均值且有己知的相关函数;(t,:)的随机过程,职,是已知的非随机函数,口二(0、,…,口*)是未知参数(口,为回归系数),而参数集0是R‘的一个子集.0,的线性估计是形如见c,二(t,)或其均方极限的估计量.找寻均方意义下的最优无偏线性估计的问题归结为解与r有关的线性代数或线性积分方程.事实上,最优估计目由对任何形如七=艺bj、(tj)且艺b,伞,(t,)=0的心组成的联立方程E。(吞,劲二0所确定.在若干情形下,当T~的时,用最小二乘方法渐近获得的O的估计,并不比最优线性估计坏,但前者在计算上更简单月.不依赖于:. 例6,在例5的条件下,k二1,中;(t)‘1.这时最优无偏线性估计最(血ea犷estin迫tor)为 、=.浩了「·(。)二(·)二)·(r)“亡{,而估计量T 。‘一喜f二(:)“。 T才-·一渐近地与之有相同的方差. G皿ss过程的统计问题.设{x(t):O蕊t簇T,p‘{}对所有口‘0为Gauss过程(Gaussian process).关于Gauss过程,有如下二者择一的结果:任何两个测度尸乙尸J或者相互绝对连续或者奇异.因为Gauss分布pJ是由其均值m。(:)二E。x(t)及其相关函数,。(s,t)=E,无(s)x(t)完全确定的,从而似然比d尸J/d尸J以一种复杂的方式由m。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条