1) polynomial expansion
多项式展开
1.
We compare the Fokker Planck equation with the Vlasov equation in the aspects of the origin, physics meaning, solution, and also introduce the method of polynomial expansion to solve the equation.
比较了Fokker Planck方程和Vlasov方程在来源、意义和解法方面的关联和不同 ,同时介绍了一种多项式展开束团耦合模式来求解Fokker Planck方程的方法 ,并在静态分布中包含了势阱畸变的效
2) polynomial expansion
多项展开式
3) Hermite development
Hermite多项式展开
4) polynomial expansion method
多项式展开法
1.
The exact solutions to dispersive long-wave equations are obtained by a polynomial expansion method based on the idea of the homogeneous balance method.
基于齐次平衡法的思想,利用多项式展开法解得了具有色散项的长波方程组的精确解。
2.
The exact solutions of the KdV-Burgers equation are obtained by a polynomial expansion method based on idea of the homogeneous balance method.
基于齐次平衡法的思想,利用多项式展开法解得了KdV-Burgers方程的精确解。
5) polynomial chaos expression
多项式混沌展开
1.
Combined with a polynomial chaos expression(PCE),this paper applies the stochastic Galerkin method(SGM) to analyze the system response.
通过改进的去耦算法对随机互连线元进行去耦,结合随机伽辽金方法(SGM)和多项式混沌展开(PCE)进行互连分析,进而利用复逼近及二分法给出工艺参数扰动下互连时延的有限维表达式。
6) expansion of a polynomial
多项式的展开
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。